Heba Isawi | Chemistry Award | Best Researcher Award

Assoc Prof Dr. Heba Isawi | Chemistry Award | Best Researcher Award

Assoc Prof Dr. Heba Isawi, Desert Research Center, Egypt

Assoc. Prof. Dr. Heba’s profile showcases a strong educational and research background in chemistry, water treatment, and desalination technologies, making her a promising candidate for the Research for Best Researcher Award. Below is an evaluation of her qualifications based on various criteria:

Publication profile

Educational Background πŸŽ“

Dr. Heba has a solid academic foundation, including a Ph.D. in Chemistry from Ain Shams University, Egypt, with a focus on synthesizing nano-enhanced reverse osmosis membranes for desalination. Her education is further enriched by international exposure, such as her time as a visiting scholar at the University of Waterloo in Canada, where she collaborated on advanced chemical engineering projects. This diverse academic background provides a robust foundation for innovative research in water treatment.

Professional Positions πŸ’Ό

Throughout her career, Dr. Heba has held significant research positions at the Desert Research Center in Cairo, Egypt. As an Associate Professor, she has been actively involved in water desalination and hydrogeochemistry research, showcasing her dedication to addressing critical environmental challenges. Her experience as a visiting researcher at the University of Waterloo further highlights her commitment to international collaboration and knowledge exchange.

Research Contributions and Projects πŸ”¬

Dr. Heba has participated in and led numerous research projects focused on water desalination, treatment, and groundwater management. Notable projects include the development of novel nanocomposite materials for water decontamination and the synthesis of innovative membranes for desalination. Her involvement in projects like creating digital water resource maps and integrating geophysical and hydrogeochemical methods demonstrates her comprehensive approach to solving water-related issues.

Awards and Recognition πŸ†

Dr. Heba’s research excellence is recognized through prestigious awards, such as the U.S. INNOVATES-Egypt Joint Board on Scientific and Technological Cooperation grant, and funding from the Scientific Research and Developmental Funding (STDF) for her innovative work in desalination. These accolades reflect her capability to secure competitive research funding and her contributions to the scientific community.

Memberships and Collaborations 🀝

Her active participation in multiple collaborative projects, both nationally and internationally, signifies her role as a key contributor to the field of water treatment and desalination. Her involvement in diverse research initiatives, including those funded by the University of Tabuk and the Desert Research Center, underscores her ability to work effectively in multidisciplinary and multicultural research environments.

Publication Top Notes

  • Combined electrocoagulation/flotation technique and membrane desalination for textile wastewater reuse
    Isawi, H., Sadik, M.A., Nasr, F.A.
    Journal of Environmental Chemical Engineering, 2024, 12(5), 113661 πŸ“œ
  • Design, fabrication, and performance assessment for green hydrogen production unit
    El-Aassar, A.-H.M., Mahmoud, F.E., elbakry, S., Sayed Alahl, A.A., Isawi, H.
    International Journal of Hydrogen Energy, 2024, 84, pp. 1050–1057 πŸ“œ
  • Improvement of hybrid polyvinyl chloride/dapsone membrane using synthesized silver nanoparticles for the efficient removal of heavy metals, microorganisms, and phosphate and nitrate compounds from polluted water
    Moustafa, H., Shemis, M.A., Ahmed, E.M., Isawi, H.
    RSC Advances, 2024, 14(28), pp. 19680–19700 πŸ“œ (1 citation)
  • Preparation and Characterization of Nanocomposite Forward Osmosis Membranes for Water Desalination
    El-Sayed, F.M., Abo El-Fadl, M., Abo Aly, M.M., Isawi, H., Mohamed, E.A.Ali
    Egyptian Journal of Chemistry, 2024, 67(3), pp. 127–138 πŸ“œ
  • Fabrication and characterization of magnetic cobalt ferrite intercalated chitosan grafted polyaniline ternary nanocomposites for removing some heavy metals simultaneously
    Abulyazied, D.E., Isawi, H., Ali, E.S., Rashad, M., Abd El Wahab, S.M.
    Journal of Molecular Liquids, 2024, 393, 123527 πŸ“œ (5 citations)
  • Retraction Note: Surface modification of thin film composite forward osmosis membrane using graphene nanosheets for water desalination
    El-Sayed, F.M., Ali, M.E.A., Isawi, H., Aly, M.M.A., El-Fadl, M.M.S.A.
    Scientific Reports, 2023, 13(1), 3404 πŸ“œ
  • Advanced photocatalytic degradation of organic pollutants using magnetic nanostructured PVA membrane under solar irradiation
    Abomostafa, H.M., Isawi, H., Abulyazied, D.E., Abouhaswa, A.S.
    Surfaces and Interfaces, 2023, 42, 103402 πŸ“œ (5 citations)
  • Effective nanomembranes from chitosan/PVA blend decorated graphene oxide with gum rosin and silver nanoparticles for removal of heavy metals and microbes from water resources
    Ahmed, E.M., Isawi, H., Morsy, M., Hemida, M.H., Moustafa, H.
    Surfaces and Interfaces, 2023, 39, 102980 πŸ“œ (22 citations)
  • Preparation and characterization of rare earth element nanoparticles for enhanced photocatalytic degradation
    El-Kholy, R.A., Isawi, H., Zaghlool, E., Said, M.M., El-Aassar, A.-E.M.
    Environmental Science and Pollution Research, 2023, 30(26), pp. 69514–69532 πŸ“œ (6 citations)
  • Synthesis of graphene oxide-silver (GO-Ag) nanocomposite TFC RO membrane to enhance morphology and separation performances for groundwater desalination, (case study Marsa Alam area- Red Sea)
    Isawi, H.
    Chemical Engineering and Processing – Process Intensification, 2023, 187, 109343 πŸ“œ (13 citations)


Conclusion
🌟

Assoc. Prof. Dr. Heba’s extensive background in chemical engineering, her innovative research on desalination and water treatment technologies, and her numerous awards and collaborative projects make her a highly suitable candidate for the Research for Best Researcher Award. Her work not only advances scientific understanding but also provides practical solutions to critical water resource management challenges, demonstrating her significant impact in the field.

 

Sunita Bhagat | Chemistry | Women Researcher Award

Sunita Bhagat | Chemistry | Women Researcher Award

Prof Sunita Bhagat, ARSD College, University of Delhi, India

Based on the extensive details provided, Prof. Sunita Bhagat is highly suitable for the “Research for Women Researcher Award.”

Publication profile

google scholar

Academic Background and Career

Prof. Bhagat holds a Ph.D. from the University of Rajasthan, Jaipur (1989) and has been associated with prestigious institutions like ARSD College and the University of Delhi. Her roles have evolved from lecturer to professor, demonstrating her commitment to research and teaching in chemistry.

Research and Specialization

Her research focuses on Natural Product Synthesis, Fluorine Chemistry, and Green Chemistry. She has successfully managed numerous high-impact projects funded by esteemed bodies like the Department of Science and Technology (DST) and the University Grants Commission (UGC). Her work, particularly in the development of fluorinating reagents and biologically important heterocycles, has garnered significant recognition.

Awards and Honors

Prof. Bhagat has received multiple accolades, including the Teaching and Research Excellence Award from the University of Delhi (2023) and the INSA Teacher’s Award (2017). These awards highlight her dual excellence in both research and teaching.

Publications and Research Guidance

She has published in respected journals like ChemistrySelect and ChemCatChem, contributing valuable insights into areas such as molecular docking, green synthesis, and the development of natural products. Additionally, she has supervised numerous doctoral theses, underscoring her role in mentoring future researchers.

Leadership and Academic Involvement

Prof. Bhagat has held significant administrative and academic roles, including convening academic planning committees and organizing key conferences. Her leadership extends to curriculum development and science education outreach, reflecting her commitment to academic growth and innovation.

Conclusion

Prof. Sunita Bhagat’s impressive academic background, extensive research portfolio, numerous awards, and leadership roles make her an ideal candidate for the “Research for Women Researcher Award.” Her contributions to chemistry and her dedication to teaching and mentoring have had a profound impact on the scientific community.

Publication top notes

Synthesis of some salicylaldehyde‐based Schiff bases in aqueous media

A facile synthesis of novel spiro-[indole-pyrazolinyl-thiazolidine]-2, 4β€²-dione

A facile synthesis of novel unsymmetrical bis-spiro [indole-pyrazolinyl-thiazolidine]-2, 4′-diones

Microwave-assisted nickel-catalyzed one-pot synthesis of 2, 4, 5-trisubstituted imidazoles

Synthesis of Some Novel bis‐Spiro [indole‐pyrazolinyl‐thiazolidine]‐2, 4′‐diones

Synthesis, 19F NMR spectral studies and antibacterial evaluation of some new fluorine containing indole derivatives

Nabila BOUASLA | Chemistry | Best Scholar Award

Mrs. Nabila BOUASLA | Chemistry | Best Scholar Award

Mrs. Nabila BOUASLA, UniversitΓ© Chadli Bendjedid-El Tarf, Algeria

Based on the detailed curriculum vitae provided, Mrs. Nabila Bouasla appears to be a suitable candidate for the Research for Best Scholar Award. Here are some key points that support this opinion:

Publication profile

Google Scholar

Educational Background:

Mrs. Bouasla holds a Doctorate in Sciences in Chemistry, specializing in Physical Chemistry of materials, from the University Badji Mokhtar-Annaba. Her academic progression from a graduate diploma to a doctorate demonstrates a strong commitment to her field.

Research and Training:

She has participated in various specialized training programs, including short internships at the ITODYS laboratory in Paris and training in advanced analytical techniques such as Rietveld analysis and electrochemical impedance spectroscopy. These experiences indicate her dedication to staying updated with cutting-edge research methodologies.

Teaching and Mentorship:

Mrs. Bouasla has extensive teaching experience, ranging from assistant roles to lecturer positions. She has taught various chemistry modules, which demonstrates her ability to communicate complex concepts effectively. Moreover, her involvement in supervising student projects highlights her role in mentoring and developing the next generation of scientists.

Research Supervision:

She has directed and examined multiple research projects at the undergraduate and master’s levels, covering diverse topics like environmental chemistry, phytochemistry, and corrosion studies. Her supervisory roles show her capability to guide significant research initiatives.

Scientific Contribution:

Mrs. Bouasla’s contribution to scientific research is evident from her supervision of projects that explore practical applications, such as the study of the inhibitory effects of natural substances on corrosion. These studies contribute to sustainable scientific practices and innovative material science research.

Publication Top Notes

Conclusion

Her strong educational background, research involvement, and teaching experience make her a commendable candidate for recognition in scholarly research.

 

Ana-Maria Resmerita | Supramolecular Chemistry | Best Researcher Award

Dr. Ana-Maria Resmerita | Supramolecular Chemistry | Best Researcher Award

Dr. Ana-Maria Resmerita, Institutul de Chimie Macromoleculara “Petru Poni”, Iasi, Romania

Dr. Ana-Maria ResmeriΘ›Δƒ – Evaluation for Best Researcher Award

Publication profile

Scientific Interests and Expertise

Dr. Ana-Maria ResmeriΘ›Δƒ’s research focuses on the development of supramolecular networks based on polyrotaxanes, which have significant applications in electronics and optoelectronics. Her expertise includes synthesizing insulated and conjugated polyrotaxanes architectures, emphasizing the functionalization of materials for advanced technological applications. Her contributions in this area are noteworthy, given the growing importance of electronic materials.

Education and Training

Dr. ResmeriΘ›Δƒ holds a PhD in Chemistry and a Master’s degree in Bio-polymeric Materials from the β€œGh. Asachi” Technical University, Romania. She further advanced her research skills through post-doctoral fellowships at the University of Pennsylvania, USA, and β€œGh. Asachi” Technical University, Romania. Her academic training reflects a solid foundation in polymer chemistry and advanced materials science.

Work Experience and Research Activities

With a robust background in the synthesis of supramolecular networks, Dr. ResmeriΘ›Δƒ has significant expertise in developing cross-linked polyrotaxanes, permodified cyclodextrins, and light-stimuli responsive azopolymers for optoelectronic applications. Her experience extends to a variety of characterization techniques, including infrared spectroscopy and nuclear magnetic resonance, which are essential for analyzing the properties of advanced polymeric materials.

Scientific Record

Dr. ResmeriΘ›Δƒ has an impressive scientific record with 47 published articles in ISI-indexed journals and contributions to three book chapters. She has actively participated in seven research projects, highlighting her collaborative spirit and commitment to advancing scientific knowledge in her field.

International Visibility

With a Hirsch index of 14 and over 1500 citations, Dr. ResmeriΘ›Δƒ’s work is widely recognized within the international scientific community. Her contributions to the field of macromolecular chemistry are well-cited, reflecting her impact and influence. Her visibility is further enhanced through her presence on academic platforms such as Brainmap and ORCID.

Publication Top Notes

  • “Composite materials based on slide‐ring polyrotaxane structures for optoelectronics” – Journal of Polymer Science (2024) DOI: 10.1002/pol.20240285 πŸ“„
  • “Inclusion Complexes of 3,4-Ethylenedioxythiophene with Per-Modified Ξ²- and Ξ³-Cyclodextrins” – MOLECULES (2023) DOI: 10.3390/molecules28083404 πŸ“„
  • “Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air-Water Interface” – MATERIALS (2023) DOI: 10.3390/ma16134757 πŸ“„
  • “Structural characteristics and the label-free detection of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudorotaxane at single molecule level” – NANO RESEARCH (2023) DOI: 10.1007/s12274-022-4918-x πŸ“„
  • “Synthesis, Properties and Adsorption Kinetic Study of New Cross-Linked Composite Materials Based on Polyethylene Glycol Polyrotaxane and Polyisoprene/Semi-Rotaxane” – MATERIALS (2023) DOI: 10.3390/ma16165594 πŸ“„
  • “Thermal and Dielectric Investigations of Polystyrene Nanoparticles as a Viable Platform-Toward the Next Generation of Fillers for Nanocomposites” – POLYMERS (2023) DOI: 10.3390/polym15132899 πŸ“„
  • “Evaluation of the Chemical, Morphological and Dielectric Properties of Supramolecular Networks Consisting of Polyethylene Glycol Polyrotaxanes and Polystyrene/Semi-Rotaxane with Hydroxypropyl-Ξ²-Cyclodextrins” – MACROMOLECULAR CHEMISTRY AND PHYSICS (2022) DOI: 10.1002/macp.202100383 πŸ“„
  • “New ARBOFILL composites: preparation and characterization” – POLYMER-PLASTICS TECHNOLOGY AND MATERIALS (2022) DOI: 10.1080/25740881.2022.2084410 πŸ“„
  • “Structural and morphological characterization of a new semi-polyrotaxane architecture based on 2-hydroxypropyl-Ξ²-cyclodextrins and polyisoprene” – REACTIVE & FUNCTIONAL POLYMERS (2022) DOI: 10.1016/j.reactfunctpolym.2022.105459 πŸ“„
  • “Synthesis, Photophysics, and Langmuir Films of Polyfluorene/Permodified Cyclodextrin Polyrotaxanes” – LANGMUIR (2021) DOI: 10.1021/acs.langmuir.1c02014 πŸ“„
  • “Morphological and Electronic Properties of Poly(ethylene glycol)/RAMEB Polyrotaxane and Polypyrrole Supramolecular Networks” – MACROMOLECULAR CHEMISTRY AND PHYSICS (2020) DOI: 10.1002/macp.202000011 πŸ“„
  • “Photophysics of poly(3,4-ethylenedioxythiophene) covered by permodified Ξ³-cyclodextrin” – ADVANCED TOPICS IN OPTOELECTRONICS, MICROELECTRONICS AND NANOTECHNOLOGIES X (2020) DOI: 10.1117/12.2572091 πŸ“„
  • “Cucurbit[7]uril-Threaded Poly(3,4-ethylenedioxythiophene): A Novel Processable Conjugated Polyrotaxane” – EUROPEAN JOURNAL OF ORGANIC CHEMISTRY (2019) DOI: 10.1002/ejoc.201801724 πŸ“„
  • “Novel supramolecular networks based on PEG and PEDOT cross-linked polyrotaxanes as electrical conductive materials” – EUROPEAN POLYMER JOURNAL (2019) DOI: 10.1016/j.eurpolymj.2019.02.015 πŸ“„
  • “Erosion as a possible mechanism for the decrease of size of plastic pieces floating in oceans” – MARINE POLLUTION BULLETIN (2018) DOI: 10.1016/j.marpolbul.2017.12.025 πŸ“„

Conclusion

Dr. Ana-Maria ResmeriΘ›Δƒ’s extensive research in supramolecular networks and polymer chemistry, coupled with her strong publication record and international recognition, makes her a highly suitable candidate for the Best Researcher Award. Her work not only advances scientific understanding but also contributes to practical applications in electronics and optoelectronics, demonstrating her significant impact in the field.

Rocio Redon | Chemistry Award | Women Researcher Award

Prof Dr. Rocio Redon | Chemistry Award | Women Researcher Award

Prof Dr. Rocio Redon, Universidad Nacional AutΓ³noma, Mexico

Publication profile

Academic Background πŸŽ“

Prof. Dr. Rocio Redon has an extensive academic background, showcasing a robust foundation in Chemistry. She obtained her Doctorate in Chemical Sciences (Inorganic Chemistry) from the Universidad Nacional AutΓ³noma de MΓ©xico (UNAM) in 2002, with a thesis on dynamic studies of fluoro-sulfur-containing ligands in Pd(II) compounds. Her doctoral research included multiple international stays at prestigious institutions such as the University of Hawaii, the University of Oxford, and the University of Essex, where she gained expertise in organometallic synthesis and NMR studies. This solid academic foundation provided her with the skills necessary for advanced research in inorganic chemistry.

Postdoctoral and Sabbatical Experience πŸ”¬

Prof. Dr. Redon has completed significant postdoctoral research at the Centro de Ciencias Aplicadas y Desarrollo TecnolΓ³gico (UNAM) from 2003 to 2004, where she worked on developing 1D fullerene structures in nanostructured templates. Additionally, she has undertaken sabbaticals at McGill University and the Universidad AutΓ³noma del Estado de Morelos, focusing on the synthesis of multifunctional polymers and the interaction of dendrimer-type macromolecules with commercial drugs. These experiences have enhanced her research profile, particularly in applied and synthetic chemistry.

Academic Positions and Current Appointments πŸ“š

Prof. Dr. Redon has held various academic positions, including a Visiting Professorship at the Universidad AutΓ³noma del Estado de Morelos and McGill University. She has been a Full-Time Researcher at the Centro de Ciencias Aplicadas y Desarrollo TecnolΓ³gico, UNAM, since 2004, and currently holds the position of β€œInvestigador Titular B” at the Instituto de Ciencias Aplicadas y TecnologΓ­a, UNAM. Her role as a National Researcher (Level I) underscores her ongoing contributions to the scientific community in Mexico and beyond.

Research Fields and Subfields πŸ”

Her primary research interests lie in Inorganic Chemistry, particularly in coordination and organometallic compounds, catalysis, and the synthesis of macromolecules for controlled drug release. Her work extends to nanostructured materials, focusing on the synthesis and characterization of zerovalent platinum group nanoparticles, metal oxide nanoparticles, and their interaction with multifunctional polymers. This interdisciplinary approach positions her research at the cutting edge of material science and nanotechnology.

Research Lines and Contributions πŸ§ͺ

Prof. Dr. Redon’s research lines include the synthesis of multifunctional β€˜Miktoarm’ polymers for controlled drug release, the development of polymer-nanoparticle materials for bactericidal applications, and the creation of nanostructured materials for additive manufacturing. Her work on homogeneous catalytic reactions using nanosystems as catalysts has significant implications for both the pharmaceutical and materials science industries, showcasing her innovative approach to applied chemistry.

Publication Top Notes

  • “Highly efficient and regioselective production of trisubstituted alkenes through heck couplings catalyzed by a palladium phosphinito PCP pincer complex” πŸ§ͺ – Cited by 245, 2000
  • “High yield olefination of a wide scope of aryl chlorides catalyzed by the phosphinito palladium PCP pincer complex:[PdCl {C6H3 (OPPri2) 2-2, 6}]” πŸ’Ž – Cited by 242, 2000
  • “One-step synthesis of Mn3O4 nanoparticles: Structural and magnetic study” βš›οΈ – Cited by 200, 2005
  • “Dehydrogenation of alkanes catalyzed by an iridium phosphinito PCP pincer complex” πŸ”¬ – Cited by 172, 2004
  • “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy” πŸ”­ – Cited by 152, 2009
  • “Selective dehydrogenation of alcohols and diols catalyzed by a dihydrido iridium PCP pincer complex” 🌟 – Cited by 142, 2001
  • “Enantioselective synthesis of platinum group metal complexes with the chiral PCP pincer ligand R, R-{C6H4-2, 6-(CH2P PhBut) 2}. The crystal structure of R, R-PdCl {C6H3-2, 6 …”* πŸ’  – Cited by 122, 2002
  • “Bonding modes in palladium (II) enolates: consequences for dynamic behavior and reactivity” πŸ”„ – Cited by 108, 1999
  • “Contact angle studies on anodic porous alumina” πŸ“ – Cited by 87, 2005
  • “Highly efficient and regioselective couplings of aryl halides to olefins catalyzed by a palladium complex with a hybrid phosphorus–sulfur ligand” πŸ”§ – Cited by 58, 2002
  • “Pd catalyzed Heck reaction with the catalytic system [Pd (Ph2PC6H4-2-(CH2NMe2))(SRF) 2]: Examination of the electronic effects of fluorinated thiolates” βš™οΈ – Cited by 37, 2005
  • “[1, 1β€²-Bis (diphenylphosphino) ferrocene] palladium (II) complexes with fluorinated benzenethiolate ligands: examination of the electronic effects in the solid state, solution …” 🧰 – Cited by 37, 2004
  • “Solventless synthesis of ruthenium nanoparticles” πŸ’§ – Cited by 33, 2015
  • “Contact angle studies on anodic porous alumina” 🌐 – Cited by 32, 2006
  • “Synthesis of [SnPh2 (SRF) 2] SRF=βˆ’ SC6F4-4-H,βˆ’ SC6F5: Reactivity towards group 10 transition metal complexes” βš—οΈ – Cited by 31, 2007
  • “Aerobic synthesis of palladium nanoparticles” 🌿 – Cited by 27, 2011
  • “Allyl–palladium compounds with fluorinated benzenethiolate ligands. X-ray crystal structure of [(Ξ·3-C3H5) Pd (ΞΌ-SC6H4F-4) 2Pd (Ξ·3-C3H5)]” πŸ“ – Cited by 25, 2001
  • “Miktoarm star polymer based multifunctional traceable nanocarriers for efficient delivery of poorly water soluble pharmacological agents” 🧬 – Cited by 24, 2014

Conclusion πŸ†

Considering Prof. Dr. Rocio Redon’s extensive academic background, significant postdoctoral and sabbatical experiences, ongoing research contributions, and her recognized position in the scientific community, she is a strong candidate for the Research for Women Researcher Award. Her innovative research, particularly in the fields of nanotechnology and drug delivery systems, demonstrates her potential to make substantial impacts in both academic and practical applications.

 

 

 

 

Cheol-Hong Cheon | Organic Chemistry | Best Researcher Award

Prof Dr. Cheol-Hong Cheon | Organic Chemistry | Best Researcher Award

Prof Dr. Cheol-Hong Cheon, Korea University, South Korea

Prof. Dr. Cheol-Hong Cheon: A Candidate for the Best Researcher Award

Publication profile

Scopus

Academic Background

Prof. Dr. Cheol-Hong Cheon is a distinguished academic in the field of chemistry, with a robust educational foundation from Korea University and The University of Chicago. He earned his B.S. and M.S. in Chemistry from Korea University, followed by a Ph.D. in Chemistry from The University of Chicago, under the mentorship of Professor Hisashi Yamamoto.

Professional Experience

Dr. Cheon’s career is marked by significant academic and research positions. He served as a Post-Doctoral Research Fellow at the University of California, Berkeley, and later joined Korea University, advancing from Assistant Professor to full Professor. His tenure includes a visiting scholarship at the University of Illinois, Urbana-Champaign.

Awards and Recognitions

Dr. Cheon has received multiple prestigious awards, including the CHUNGAM POSCO Young Investigator Fellowship and several Asian Core Program Lectureship Awards from Taiwan, Thailand, and China. He was also honored with the Stone Tower Excellence in Teaching Award, highlighting his contributions to education and research.

Research Areas

Dr. Cheon’s research spans Total Synthesis, Asymmetric Synthesis, Umpolung Chemistry, and Heterocyclic Chemistry. His innovative approaches in these areas have led to significant advancements in organic chemistry.

Representative Publications

Dr. Cheon has authored numerous high-impact publications. Notable works include the asymmetric total synthesis of Iheyamine B and the total synthesis of Rucaparib, which was recognized as a highly downloaded paper and highlighted in Synfacts. His research has consistently contributed to the field, earning recognition and citations in leading journals.

Conclusion

Prof. Dr. Cheol-Hong Cheon’s extensive academic background, significant professional experience, numerous awards, and impactful research contributions make him a suitable candidate for the Best Researcher Award. His dedication to advancing the field of chemistry through innovative research and education underscores his qualification for this prestigious recognition.