Israa Dheyaa Khalaf Al-Rubaye | Engineering | Best Researcher Award

Ms. Israa Dheyaa Khalaf Al-Rubaye | Engineering | Best Researcher Award

Ms. Israa Dheyaa Khalaf Al-Rubaye, University of Pisa, Italy

🎓 Ms. Israa Dheyaa Khalaf Al-Rubaye is a PhD candidate in Smart Industry at the University of Pisa, Italy (2022–2024), specializing in Electrical Discharge Machining (EDM) and green energy technologies. She has expertise in innovative electrode design, cryogenic treatment, and biodiesel-based dielectric fluids to optimize machining processes for precision, energy efficiency, and sustainability. With a Master’s in Industrial-Mechanical Engineering from the University of Technology, Baghdad, she collaborates with leading institutions like CNR and NANESA. 🛠️ Her published research focuses on green EDM, advanced materials, and process optimization. Ms. Al-Rubaye is fluent in Arabic and English. 🌍

 

Publication Profile

Orcid

🎓 Education Qualifications

Ms. Israa Dheyaa Khalaf Al-Rubaye is currently a PhD candidate in the Smart Industry program at the University of Pisa, Italy, where she has been specializing in advanced manufacturing and sustainable technologies since 2022. Her doctoral research focuses on Electrical Discharge Machining (EDM) and green energy applications, demonstrating her commitment to innovation and environmental impact reduction. 🌍 Prior to this, she earned her Master’s degree in Industrial-Mechanical Engineering from the University of Technology, Baghdad, Iraq (2012–2016), gaining a strong foundation in mechanical systems and industrial process optimization. 🛠️

 

💼 Work Experience and Profession

Ms. Israa Dheyaa Khalaf Al-Rubaye has extensive experience in both academic and industrial settings. Since January 2022, she has been a Ph.D. candidate in the Smart Industry Department at the University of Pisa, Italy, where she conducts cutting-edge research in Electrical Discharge Machining (EDM) and green energy technologies. 🌱 She has collaborated with CNR and NANESA institutions, contributed to the development of green dielectric fluids, and designed innovative EDM electrodes. Prior to her Ph.D., she worked as a Planning and Follow-up Engineer at the Company for Land Transportation, Iraq, where she supported strategic planning and project coordination. 🚗

 

🔬 Research Focus

Ms. Israa Dheyaa Khalaf Al-Rubaye’s research primarily focuses on Electrical Discharge Machining (EDM), with an emphasis on optimizing die-sinking EDM processes and improving machining performance through innovative electrode designs, such as her work on U-shaped electrodes. Her research also explores green energy technologies, specifically the use of eco-friendly dielectric fluids to reduce environmental impact in industrial processes. 🌱 She investigates cutting-edge materials, including the integration of graphene coatings and biodiesel-based dielectric fluids, to enhance energy efficiency and machining precision. Her work contributes to advancing sustainable manufacturing practices and innovative machining technologies. ⚙️

 

📚 Publications

  • “Effect of manufacturing new U-shaped electrode on die sinking EDM process performance” – Machining Science and Technology, Nov 2024. DOI: 10.1080/10910344.2024.2414263 ⚙️
  • “Toward green electrical discharge machining (EDM): state of art and outlook” – Machining Science and Technology, Jan 2023. DOI: 10.1080/10910344.2023.2194961 🌱

 

 

Adnan Saifan | Mechanical Manufacturing | Best Researcher Award

Dr. Adnan Saifan | Mechanical Manufacturing | Best Researcher Award

Dr. Adnan Saifan, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences., China

Dr. Adnan Saifan is a PhD candidate in Mechanical Manufacturing and Automation at the University of Chinese Academy of Sciences, Beijing, China, and Ningbo Institute of Materials Technology and Engineering. His research focuses on robotic surface processing technologies, including ultrasonic multi-needle peen forming. He holds a Master’s in Mechanical Engineering from Hohai University, China, and a Bachelor’s from Sana’a University, Yemen. Dr. Saifan’s work is highly regarded, with several published papers in international journals and patents in the field of advanced manufacturing technologies. He is proficient in wear and corrosion analysis, additive manufacturing, and robotic systems.

Publication Profile

Google Scholar

Education & Qualifications 🎓

Dr. Adnan Saifan holds a PhD in Mechanical Manufacturing and Automation from the University of Chinese Academy of Sciences and Ningbo Institute of Materials Technology and Engineering, China (2021-2025), focusing on robotic ultrasonic multi-needle peen forming technology. He earned a Master of Engineering (MEng) in Mechanical Engineering from Hohai University, Nanjing, China (2018-2021), with a thesis on automatic welding systems for boiler tube wall cladding. Dr. Saifan also holds a BSc in Mechanical Engineering from Sana’a University, Yemen (2011-2016), and various diplomas in Chinese Language, Computer Skills, and English. 🌍📚

 

Work Experience & Projects 💼

Dr. Adnan Saifan is currently a Doctoral Researcher at the University of Chinese Academy of Sciences and Ningbo Institute of Materials Technology & Engineering (2021–Present), working on robotic ultrasonic shot peening for shape correction. Prior to this, he worked as a Mechanical Engineer at Suzhou Hailu Heavy Industry Co., Ltd., China (2019-2021), and as an intern at Mettler-Toledo, China (2019-2020), contributing to projects like the Saudi Arabia Railway Infrastructure. He also gained research experience at Hohai University (2018-2021), designing an automatic welding robot, and held various engineering roles in Yemen. 🛠️🚀

 

Honors & Awards 🏆

Dr. Adnan Saifan has received numerous honors for his outstanding academic and research achievements. In 2023, he was recognized as the Outstanding International Student at Ningbo Institute of Materials Technology and Engineering and won the Silver Award at the Ningbo Graduate Academic Festival. He also received Honor Certificates from the Ministry of Higher Education-Yemen and the Yemeni Student Union of China. Additional accolades include the 2022 Outstanding Volunteer Award from the University of Chinese Academy of Sciences, the ANSO Scholarship for Young Talents, and several other scholarships and awards for excellence in research and contributions. 🌟📚🎓

 

Research Interests 🔬

Dr. Adnan Saifan’s research interests focus on a wide range of topics within Mechanical Manufacturing and Automation, including Robotics, Additive Manufacturing, and Digital Twin technologies. His work also covers areas like Surface Mechanical Treatment, Material Processing, and Peen Forming, with a focus on Plastic Deformation and Welding. He is particularly interested in studying Wear and Mechanical Properties of materials, utilizing Finite Element (FE) Analysis and Optimization techniques. Additionally, Dr. Saifan applies Design of Experiment (DoE) methodologies to improve manufacturing processes and material performance. 🛠️🤖🔧

 

Publication Top Notes 📚

  1. “Influence of post-weld heat treatment on microstructure and toughness properties of 13MnNiMoR high strength low alloy steel weld joint” – Cited by: 5, Year: 2021
  2. “Development of an automatic welding system for the boiler tube walls weld overlay” – Cited by: 3, Year: 2020
  3. “Data-driven modeling and optimization of a robotized multi-needle ultrasonic peen-forming process for 2024-T3 aluminum alloy” – Cited by: 1, Year: 2024
  4. “Seam tracking control for weld cladding of boiler tubes in thermal power plants” – Cited by: 1, Year: 2024
  5. “Enhancing microstructure and mechanical performance of 6061-T4 aluminum alloy through robotic ultrasonic multi-needle peening” –  Year: 2024
  6. “Data-Driven Modelling of Robotized Ultrasonic Multi-Needle Peen-Forming Process on Aluminum Alloy 2024-T3” Year: 2024

 

Mohammad Baraheni | Mechanical Engineering | Best Researcher Award

Assist. Prof. Dr. Mohammad Baraheni | Mechanical Engineering | Best Researcher Award

Assist. Prof. Dr. Mohammad Baraheni, Arak University of Technology, Iran

Assist. Prof. Dr. Mohammad Baraheni 👨‍🏫 is an Assistant Professor at Arak University of Technology, specializing in Mechanical Engineering, particularly in Production & Manufacturing. He holds a PhD from the University of Kashan, focusing on rotary ultrasonic machining. His research interests include ultrasonic machining, additive manufacturing, artificial intelligence in manufacturing, and advanced ceramics. Dr. Baraheni has published extensively in international journals and received accolades such as the Excellent Paper Award at ISAAT 2023. He has teaching experience in subjects like CNC and advanced machining. His professional background also includes roles in industry and design engineering. 📚🔧🌍

Education

Assist. Prof. Dr. Mohammad Baraheni completed his Post-Doctoral Degree at the University of Tabriz (2019-2022), specializing in Mechanical Engineering, with a focus on Ultrasonic Machining of Additive Manufactured Materials. He also pursued a Sabbatical Fellowship at Hochschule Furtwangen University in Germany (2017-2018), where he developed an expert system using Artificial Intelligence. Dr. Baraheni holds a PhD in Mechanical Engineering from University of Kashan (2014-2020), focusing on Rotary Ultrasonic Machining of Si3N4. His earlier academic journey includes an M.Sc. and B.Sc. from the University of Tabriz. 🏫🔧🧑‍🎓

 

Professional Experience

Assist. Prof. Dr. Mohammad Baraheni has accumulated diverse experience in both academia and industry. Since 2020, he has been serving as an Assistant Professor at Arak University of Technology. Previously, he worked as an Engineer at Tractorsazi Company (2018-2020) and a Research Assistant at Furtwangen Hochschule in Germany (2017-2018). He also gained valuable experience as a Design Engineer at Jahan Saderat Machine (2016-2017) and a Sales Engineer at Pumpiran (2012-2014). Additionally, Dr. Baraheni has worked independently, designing industrial molds and machines such as Briquetting machines and Ultrasonic washing machines. ⚙️🔧

 

Teaching Experience

Assist. Prof. Dr. Mohammad Baraheni has a rich teaching portfolio across various institutions. He has taught courses in Industrial Drawing at University of Kashan, Grinding Technology, Universal Machining, and Advanced Machining Processes at Islamic Azad University. At Arak University of Technology, he has delivered lectures on Computer Numerical Control, Casting, Metallurgy, Metrology, and Welding. Additionally, Dr. Baraheni has taught Plastic Molding Design at University of Tabriz and English for Mechanical Engineering at Shahid Mousavian University. His broad expertise spans key areas in mechanical engineering. 🛠️📚

 

Research Focus

Assist. Prof. Dr. Mohammad Baraheni’s research primarily revolves around advanced machining techniques and their application in composite materials. His work extensively explores rotary ultrasonic machining, ultrasonic-assisted drilling, and grinding technologies for materials like Si3N4 ceramics, carbon fiber reinforced polymers (CFRP), and glass fiber reinforced plastics (GFRP). He has contributed to optimization of process parameters, delamination control, surface integrity, and cutting force prediction. His research also delves into additive manufacturing, material behavior, and industrial mold design, focusing on enhancing precision and efficiency in machining processes. His work bridges mechanical engineering with innovative manufacturing. 🌍

 

Publication Top Notes

  • Residual stress in engineering materials: a review – 104 citations, 2022 📖🔧
  • Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding – 70 citations, 2019 🔬🛠️
  • Parametric analysis of delamination in GFRP composite profiles by performing rotary ultrasonic drilling approach – 50 citations, 2019 🔩💡
  • Comprehensive optimization of process parameters in rotary ultrasonic drilling of CFRP – 43 citations, 2019 ⚙️🔩
  • Parametric investigation of rotary ultrasonic drilling of carbon fiber reinforced plastics – 39 citations, 2018 ⚙️🔧
  • Enhancing dimensional accuracy and surface integrity by helical milling of CFRP – 36 citations, 2019 📐✂️
  • Feasibility study of delamination in rotary ultrasonic-assisted drilling of GFRP – 35 citations, 2018 🔬🛠️
  • Mathematical model to predict cutting force in rotary ultrasonic assisted end grinding of Si3N4 – 32 citations, 2020 📏💻
  • Environmental, mechanical and materialistic effects on delamination damage of glass fiber composites – 31 citations, 2019 🧪🛠️
  • Ultrasonic-assisted friction drilling process of aerospace aluminum alloy (AA7075) – 19 citations, 2021 ✈️🔩
  • Evaluating the hole quality produced by vibratory drilling: additive manufactured PLA+ – 18 citations, 2021 🖨️🔩
  • Statistical study of the effect of various machining parameters on delamination in drilling of CFRP – 17 citations, 2018 🔍💡
  • Investigation on rotary ultrasonic assisted end grinding of silicon nitride ceramics – 13 citations, 2019 ⚙️🔬
  • Experimental comparison of MO40 steel surface grinding performance under different cooling techniques – 13 citations, 2019 🛠️🧊
  • Experimental and empirical model analysis of microsurface texturing on 316 L press-fit joints fabricated by selective laser melting – 12 citations, 2020 🔬🖨️

 

HARPREET AASI | Engineering | Women Researcher Award

HARPREET AASI | Engineering | Women Researcher Award

Dr HARPREET AASI, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, India

Dr. Harpreet Aasi is a Postdoctoral Fellow in Thermal Engineering at IIT Bombay (2024–present). He holds a Ph.D. in Thermal Engineering from IIT Roorkee (2014–2020), an M.Tech. from NIT Raipur, and a B.E. in Mechanical Engineering. His expertise lies in heat transfer enhancement, particularly using ultrasound in electronic cooling systems, involving both numerical (ANSYS Fluent) and experimental methods. A recipient of multiple awards, including the Silver Medal at NIT Raipur, Dr. Aasi has contributed to prestigious projects sponsored by CSIR and DST. He is also an active reviewer for high-impact journals and has published extensively in heat exchanger optimization. 📚💡

Publication Profile

Scopus

Education

Dr. Harpreet Aasi is a distinguished researcher specializing in thermal engineering. Currently, he is pursuing a Postdoctoral Fellowship at the Indian Institute of Technology Bombay (March 2024 – present). He earned his Ph.D. with honors in Thermal Engineering from IIT Roorkee (2014-2020) and completed an M.Tech. in Thermal Engineering with an impressive CPI of 8.96/10 at NIT Raipur (2011-2013). His academic journey began with a B.E. in Mechanical Engineering from New Government Engineering College Raipur, achieving a stellar CPI of 8.99/10 (2006-2010). Dr. Aasi’s dedication to academics is reflected in his strong foundations, scoring 76% in Intermediate (2005-2006) and 85% in Matriculation (2003-2004). 📚✨

Experience

Dr. Aasi conducted numerical (Ansys Fluent) and experimental studies (non-intrusive optical techniques) on single-phase and two-phase flow boiling processes for electronic cooling systems. This research explored the effect of ultrasound parameters, demonstrating its potential for enhancing heat transfer. Ph.D. Research: Investigations on Three-fluid Compact Plate-fin Heat Exchanger 🌡️📊 Dr. Aasi performed extensive experimental and numerical investigations (MATLAB coding) under transient and steady states, addressing flow maldistribution, inlet temperature non-uniformity, and ambient heat interaction. Innovative modeling optimized geometrical attributes for diverse plate-fin types. M.Sc. Research: Parametric Study of Orthotropic Annular Fin with Contact Resistance 🌀🛠️ Dr. Aasi developed a 2D dimensionless steady-state model to assess the thermal performance of orthotropic annular fins, focusing on polymer matrix composites with axis-dependent properties.

Award and Scholarships

Dr. Harpreet Aasi has an impressive academic record, including a Silver Medal at the National Institute of Technology (NIT) Raipur in 2012-2013 🥈. He received the Academic Excellence Award at NIT Raipur in 2011-2012 🎓. Ranked 10th in the Chhattisgarh Swami Vivekanand Technical University state toppers list, he was 1st in New Government Engineering College Raipur in 2010 🏆. Dr. Aasi secured prestigious fellowships, including the Institute Postdoctoral Fellowship at IIT Bombay in 2024 🧑‍🔬 and MHRD scholarships for his Ph.D. (2014-2019) and M.Tech. (2011-2013) 📚. Additionally, he earned state-level merit scholarships during his B.E. studies (2007-2010) 🏅.

Project contribution

Dr. Harpreet Aasi has conducted groundbreaking research on optimizing the performance of three-fluid heat exchangers through both numerical and experimental investigations. Sponsored by CSIR, this research aims to improve heat transfer efficiency and system performance. Additionally, his study on the effect of temperature and flow nonuniformities on three-fluid compact heat exchangers, sponsored by DST, delves into understanding how such factors influence overall efficiency. These contributions are crucial in advancing thermal management systems, with potential applications in various industries, from energy to manufacturing. 🌡️🔧

Research focus

Dr. Harpreet Aasi’s research primarily focuses on the thermo-hydraulic performance and optimization of multi-fluid heat exchangers, particularly three-fluid systems. His work investigates the effects of flow non-uniformity, ambient heat ingression, and temperature nonuniformity on the efficiency and dynamic behavior of cross-flow and plate-fin heat exchangers. Using advanced techniques like Artificial Neural Networks (ANN) and second law analysis, he aims to improve heat exchanger designs for enhanced thermal management in various engineering applications. His research is crucial for energy efficiency and thermal optimization in industries such as cryogenics, power generation, and heat recovery. 🔥🔧⚙️💡

Publication top notes

Investigation on cross-flow three-fluid compact heat exchanger under flow non-uniformity: an experimental study with ANN prediction

The impact of ambient heat ingression on performance of cryogenic three-fluid cross-flow compact heat exchanger

Experimental investigation and ANN modelling on thermo-hydraulic efficacy of cross-flow three-fluid plate-fin heat exchanger

Detailed design optimization of three-fluid parallel-flow plate-fin heat exchanger using second law analysis

Influence of flow non-uniformity on the dynamic behaviour of three-fluid cross-flow compact heat exchanger

A novel equivalence approximate model for second law based optimization of three-fluid cross-flow plate-fin heat exchanger using genetic algorithm

 

Mahadev Prabhu | Mechanical Engineering | Best Researcher Award

Dr. Mahadev Prabhu | Mechanical Engineering | Best Researcher Award

Dr. Mahadev Prabhu, Amrita Vishwa Vidyapeetham, India

Dr. Mahadev J. Prabhu is a Post-Doctoral Fellow specializing in Fluid Mechanics at Amrita Vishwa Vidyapeetham, Kerala, India. He holds a Ph.D. in Mechanical Engineering, focusing on vortex suppression in liquid draining tanks. Dr. Prabhu has extensive expertise in turbo machines, gas dynamics, aerodynamics, and renewable energy. His research contributions include 12 journal publications, with several indexed in Scopus and WoS. He has received notable accolades such as the Amrita Innovation & Research Award and has been a reviewer for the International Journal of Occupational Safety and Health. Additionally, he has delivered invited talks on fluid dynamics, enriching the academic community with his findings. 🌊💨🚀

 

Publication Profile

Google Scholar

Education

Dr. Mahadev Prabhu completed his Ph.D. in Mechanical Engineering (2017-2023) at Amrita Vishwa Vidyapeetham, Kollam. Prior to this, he earned an MTech in Thermal and Fluids, where he was a Silver Medalist with a CGPA of 9.34 (2013-2015) from the same institution. Dr. Prabhu also completed a PG Diploma in Wind Resource Assessment (2012-2013) with a CGPA of 8.28. He holds a BTech in Aerospace Engineering (2008-2012) from Amrita Vishwa Vidyapeetham, Coimbatore. His early education includes high school at Durga Higher Secondary School, Kanhangad, where he excelled with an 89% in XII and 85% in X. 🎓✨

 

Teaching and Research Experience 📚🔧

Dr. Mahadev Prabhu currently serves as a Post-Doctoral Fellow at Amrita Vishwa Vidyapeetham (June 2023–Present), where he plays a key role in NBA accreditation tasks, including preparing course and program articulation matrices. He also handles various graduate and undergraduate courses in Mechanical Engineering and guides students in their research activities. Prior to this, Dr. Prabhu was an Assistant Professor at Ilahia College of Engineering and Technology (Jan 2017–June 2017) and Dhirajlal Gandhi College of Technology (Dec 2015–Jan 2017), delivering lectures in Fluid Mechanics, Thermal Engineering, Gas Dynamics, and Jet Propulsion, while also preparing course material and guiding students. 🏫🛠️

 

Awards and Recognitions 🏆

Dr. Mahadev Prabhu has received notable accolades throughout his academic journey. He was a University-level Silver Medalist in the MTech program in Thermal and Fluids (2013-2015) at Amrita Vishwa Vidyapeetham. His contributions to research were recognized when he was honored with the Amrita Innovation & Research Awards (AIRA) in the category of Journals/Book Chapters. Additionally, Dr. Prabhu has served as a reviewer for the prestigious International Journal of Occupational Safety and Health, further demonstrating his expertise and commitment to the academic community. 🏅📚

 

Certifications 🎓

Dr. Mahadev Prabhu has earned several prestigious certifications that highlight his expertise in Fluid Mechanics and related fields. He received an NPTEL certification in Fluid Machines with ELITE, scoring 81%. He further advanced his knowledge with another NPTEL certification in Advanced Concepts in Fluid Mechanics, achieving ELITE + Silver with 77%. In addition, Dr. Prabhu earned a certification in Ideal Fluid Flows Using Complex Analysis with ELITE + Gold, attaining an impressive 92%. These certifications reflect his dedication to continuous learning and excellence in mechanical engineering. 🏅🔧

 

Research Focus

Dr. Mahadev Prabhu’s research focuses primarily on fluid dynamics, specifically vortex formation during liquid draining processes from cylindrical and conical tanks. His work investigates the suppression and control of Rankine vortices, the effects of drain port geometry, surface roughness, and the influence of various tank designs on vortex behavior. His studies contribute to the optimization of fluid draining systems in aerospace and mechanical engineering applications. With a focus on numerical simulations and experimental investigations, his research enhances the understanding of fluid mechanics in real-world applications. 🚰🔬🌀✈️

 

Publication Top Notes  

  • Vortex formation during draining from cylindrical tanks: effect of drain port eccentricityJournal of Aerospace EngineeringCited by 272017 🌀🚀
  • Rankine vortex formation during draining: a new twin port suppression strategyJournal of Applied Fluid MechanicsCited by 172020 🌀💡
  • Rankine Vortex Suppression in Tanks with Conical Base: A Numerical InvestigationJournal of Spacecraft and RocketsCited by 152021 🛸🔬
  • Liquid Draining Through Polygonal Ports: An Investigation on Gas Entraining VorticesJournal of Spacecraft and RocketsCited by 122019 🌀🔧
  • Liquid draining through multiple ports: an investigation on air core vortex formationFluid DynamicsCited by 82021 💧🌀
  • Rankine vortex formation in cylindrical tanks with curved base: an experimental investigationJournal of Spacecraft and RocketsCited by 62022 🌀📊
  • Air core vortexing in liquid draining tanks: Influence of surface roughnessProceedings of the Institution of Mechanical EngineersCited by 52023 🌀🌊
  • New parameter to characterize rankine vortex formation in liquid draining tanksJournal of Spacecraft and RocketsCited by 32023 🔬🌀
  • Effect of roughness on air core vortexing phenomenon during draining of liquids from cylindrical tanks: An experimental investigationMaterials Today: ProceedingsCited by 22023 🧪🌐
  • Vortex Formation in Liquid Columns During Draining: Influence of Drain Port GeometryAdvances in Fluid and Thermal EngineeringCited by 22021 📏🌀

Benkun Tan | Engineering | Best Researcher Award

Benkun Tan | Engineering | Best Researcher Award

Dr Benkun Tan, Hunan University of Arts and Sciences, China

Dr. Benkun Tan is a Ph.D. candidate at Changsha University of Science and Technology, specializing in Civil Engineering. His research focuses on steel-concrete composite structures, with significant contributions including studies on temperature field prediction and fatigue damage analysis. Notable publications include “Temperature Field Prediction of Steel-Concrete Composite Decks” and “Fatigue Crack Propagation in Stud Connectors.” Dr. Tan’s work is published in reputable journals such as Journal of Zhejiang University-SCIENCE A and Sustainability. His innovative approach enhances the understanding of structural integrity and performance. 🌉📚✨

Publication profile

Orcid

Education 

Changsha University of Science and Technology, located in Changsha, China, has been the academic home of a Ph.D. candidate in the School of Civil Engineering since September 1, 2019. This institution is renowned for its comprehensive engineering programs, providing a robust curriculum that integrates theoretical knowledge with practical application. The focus on civil engineering equips students with the skills needed to tackle modern infrastructure challenges. Engaging with experienced faculty and participating in cutting-edge research, the candidate is poised to make significant contributions to the field. 📚🏗️🌍 

Research focus 

Benkun Tan is an emerging researcher in the field of civil engineering, specifically focusing on steel-concrete composite structures. His research encompasses temperature field prediction, multiaxial fatigue damage analysis, and fatigue crack propagation in composite beams and connectors. Tan employs innovative methods, including ensemble algorithms and numerical simulations, to enhance the durability and performance of composite materials in construction. His contributions aim to optimize design and layout for temperature measurement in bridges, thereby improving structural integrity and safety. With a commitment to sustainability, Tan’s work is significant for advancing engineering practices in the built environment. 🔧🏗️📊 

Publication top notes

Temperature field prediction of steel-concrete composite decks using TVFEMD-stacking ensemble algorithm

Multiaxial Fatigue Damage Analysis of Steel–Concrete Composite Beam Based on the Smith–Watson–Topper Parameter

Optimization Method of Temperature Measuring Point Layout for Steel-Concrete Composite Bridge Based on TLS-IPDP

Fatigue Crack Propagation and Life Analysis of Stud Connectors in Steel-Concrete Composite Structures

Numerical Study on Stress Intensity Factors for Stud Connectors of Steel–Concrete Connection

Conclusion 

Dr. Tan’s research portfolio demonstrates consistent contributions to the fields of temperature modeling, fatigue analysis, and lifecycle assessment of steel-concrete composite structures, underscoring his suitability for the Best Researcher Award in civil engineering. His innovative methodologies and practical applications in composite structures align with the award’s focus on impactful and forward-thinking research in the field. 

 

 

Ali Fardoost | Engineering | Best Researcher Award

Mr. Ali Fardoost | Engineering | Best Researcher Award

Graduate Research Assistant, Rutgers University,  United States

Ali Fardoost is a Ph.D. student in Electrical Engineering at Rutgers University, with a strong focus on biosensing, biosensor fabrication, and nanobiotechnology. His research involves the development of innovative cancer biomarker detection systems, microfluidics, and nanowell-based biosensors. With a B.Sc. from the University of Tehran, his academic achievements include a top ranking and an award-winning thesis on cancer detection using real-time impedance measurement. Ali has hands-on experience in cleanroom environments and expertise in advanced software tools. His contributions are demonstrated in several publications, reflecting his dedication to advancing healthcare diagnostics and nanotechnology.

Publication Profile :

Scopus

Educational Background :

Ali Fardoost holds a Ph.D. in Electrical Engineering from Rutgers University and a B.Sc. from the University of Tehran, with excellent academic records (GPA of 4/4 and 3.64/4, respectively). His B.Sc. thesis, which developed a system for differentiating healthy and cancerous lymph nodes, reflects a focus on real-world, critical health issues. Being ranked in the top 0.07% of a national university entrance exam and being recognized as an exceptional talent at the University of Tehran further underscore his academic excellence and intellectual prowess.

Professional Background :

Ali Fardoost is a dedicated researcher currently pursuing his Ph.D. in Electrical Engineering at Rutgers University, with a focus on biosensor development for cancer biomarker detection. He is a Graduate Research Assistant in the NanoBioElectronics Lab, where he designs and fabricates nanowell-based biosensors for healthcare applications. His prior experience includes research on blood impedance spectroscopy for breast cancer diagnosis at the University of Tehran. Ali has developed and tested various biosensors, combining his skills in microfabrication and data analysis. His work aims to innovate in biomedical diagnostics, with a particular focus on cancer detection technologies.

Research Interests :

Ali Fardoost’s research interests span a range of cutting-edge topics in biosensing, biosensor fabrication, microfluidics, nanobioelectronics, and cancer biomarker detection. His focus on developing biosensors for cancer detection, particularly using microfabrication techniques and impedance spectroscopy, aligns with the forefront of bioengineering research. Additionally, his work on nanobiotechnology indicates his commitment to advancing interdisciplinary research, blending electrical engineering with biomedical applications. These areas are pivotal for innovations in healthcare, specifically in diagnosing and monitoring cancer, a critical global health concern.

Research Experience :

Ali has extensive research experience at both Rutgers University and the University of Tehran. His work includes fabricating biosensors for cancer biomarker detection, performing blood impedance spectroscopy for breast cancer diagnosis, and measuring the impedance of thyroid nodules for intraoperative assessment. His hands-on expertise in microfabrication, sensor design, and real-time diagnostics, coupled with his contributions to impactful projects such as cancer detection, demonstrates his deep engagement in the practical application of his research.

Award And Recognition :

Ali Fardoost has been recognized for his exceptional academic and research achievements. He was awarded the Best B.Sc. Thesis Award at the University of Tehran in 2023 for his innovative work on cancer detection using impedance measurement. Additionally, he was accepted for a Master’s program without the need for an entrance exam due to his exceptional academic performance. Ranked 25th among all undergraduate students at the University of Tehran’s College of Electrical and Computer Engineering, Ali also placed in the top 0.07% of participants in Iran’s highly competitive Nationwide University Entrance Exam (Konkoor).

Conclusion :

Ali Fardoost’s strong academic background and cutting-edge research in biosensing, cancer biomarker detection, and nanobiotechnology make him a highly suitable candidate for the Research for Best Researcher Award. His Ph.D. work at Rutgers University and B.Sc. from the University of Tehran demonstrate his exceptional academic performance, while his research projects reflect a deep commitment to solving real-world healthcare challenges. His achievements in microfluidics and biosensor fabrication, along with his focus on cancer diagnosis, show his potential for meaningful contributions to biomedical engineering. Overall, his innovative research and dedication make him a deserving candidate for this prestigious award.

Publication Top Notes :

  • Optimization of Nanowell-Based Label-Free Impedance Biosensor Based on Different Nanowell Structures – Fardoost, A., Raji, H., Javanmard, M. (2024) 📅 Biosensors, 14(9), 426 | Cited by: 0
  • Intraoperative Assessment of High-Risk Thyroid Nodules Based on Electrical Impedance Measurements: A Feasibility Study – Beheshti Firoozabadi, J., Mahdavi, R., Shamsi, K., Akbari, M.E., Abdolahad, M., Fardoost, A. (2022) 📅 Diagnostics, 12(12), 2950 | Cited by: 0

GAMAL ABDELNASSER ALLAM ABOUZIED | Engineering | Best Researcher Award

Mr. GAMAL ABDELNASSER ALLAM ABOUZIED | Engineering | Best Researcher Award

Assistant Researcher, National Water Research Center, Egypt

Gamal Abdelnasser Allam Abouzied is a promising candidate for the Research for Best Researcher Award. He holds a PhD in Earthquake and Environmental Hazards from Università Degli Studi G. D’Annunzio Di Chieti-Pescara and has accumulated over eight years of research experience. His educational background includes a master’s degree from CIHEAM Bari and a bachelor’s degree in civil engineering from Cairo University. His deep-rooted commitment to advancing geospatial knowledge in civil engineering, water resources, and climate change makes him an exemplary candidate.

 

Publication Profile

orcid

Education Background 

Gamal Abdelnasser Allam Abouzied has a robust educational background in civil engineering and environmental hazards. He earned his Bachelor’s degree in Civil Engineering from Cairo University, followed by a Master’s in Land and Water Resources Management from the Mediterranean Agronomic Institute of Bari (CIHEAM). He further advanced his studies by completing a PhD in Earthquake and Environmental Hazards at Università Degli Studi G. D’Annunzio Di Chieti-Pescara. His education emphasizes sustainable practices in water resource management and climate resilience.

Professional Experiences

Currently, Gamal serves as a Technical Advisor at Planetek Italia Srl, where he plays a pivotal role in project planning and management. His responsibilities include ensuring project objectives are met and fostering collaboration between teams. Previously, as an Assistant Researcher at the National Water Research Center in Egypt, he planned and managed national research projects, focusing on irrigation and water resource management. His experience also extends to using simulation models and nontraditional water resources in agriculture, showcasing his expertise in practical applications of his research.

Research Contributions

Gamal’s research is characterized by significant contributions to the understanding of climate data and its implications for water resource management. His doctoral thesis focused on creating a comprehensive daily time series for Central Italy, addressing challenges in precipitation data that are crucial for effective climate change mitigation. His publications include studies on gap-filling methods for precipitation data, indicating his ability to develop innovative solutions to complex environmental issues.

Awards and Recognition

Gamal Abdelnasser Allam Abouzied has received recognition for his outstanding contributions to the fields of environmental hazards and water resource management. His work has been acknowledged at several international conferences, and his innovative research on climate data and water resources has earned him prestigious awards, including recognition from leading institutions such as CIHEAM Bari. Gamal’s expertise in remote sensing, simulation modeling, and geospatial data analysis has positioned him as a respected figure in his field, further enhancing his reputation among peers and collaborators worldwide.

Conclusion

Given his extensive academic qualifications, professional experience, and impactful research contributions, Gamal Abdelnasser Allam Abouzied stands out as a highly suitable candidate for the Research for Best Researcher Award. His dedication to advancing knowledge in environmental hazards and water resources, combined with his ability to collaborate effectively in multidisciplinary teams, makes him an ideal recipient of this prestigious award.

Publication Top Notes  

  1. Completion of the Central Italy daily precipitation instrumental data series from 1951 to 2019. Geoscience Data Journal (2024) 🌧️ DOI: 10.1002/gdj3.267
    Cited by: Guoqiang Tang, Simon Michael Papalexiou, Martyn P. Clark, Eleonora Aruffo, Piero Di Carlo
  2. Understanding future hydrologic challenges: Modelling the impact of climate change on river runoff in central Italy. Environmental Challenges (2024) 🌍 DOI: 10.1016/j.envc.2024.100899
    Cited by: Mohsin Tariq, A.N. Rohith, R. Cibin, Eleonora Aruffo, Piero Di Carlo
  3. Design of large-scale on-demand irrigation system in the agricultural area of Corato, Apulia, Italy. Agriculture and Forestry (2018) 🌱 DOI: 10.17707/agricultforest.64.4.11
    Cited by: Marija Markoc, Milica Colovic, Shawkat Basel, Qotada Al-Ali.

Jingwei Zhou | Engineering | Best Researcher Award

Jingwei Zhou | Engineering | Best Researcher Award

Dr Jingwei Zhou, Tsinghua University, China

Dr. Jingwei Zhou’s impressive academic background, research contributions, and professional experience, he appears to be a strong candidate for the Best Researcher Award. Here’s an overview of his qualifications that support this opinion:

Publication profile

Scopus

Education

  • Postdoctoral Researcher in Mechanical Engineering at Tsinghua University (2021-2024)
  • Ph.D. in Mechanics from Beijing University of Technology (2015-2020)
  • Master’s in Mechanical Engineering from Inner Mongolia University of Science & Technology (2009-2012)
  • Bachelor’s in Mechanical Engineering from Beijing Information Science and Technology University (2005-2009)

Professional Experience

  • Senior Researcher at Central Research Institute Goldwind Science & Technology Co., Ltd (2020-Present)
  • Visiting Ph.D. Student at Duke University (2018-2019)
  • Blade Design Engineer at Goldwind Science & Technology Co., Ltd (2012-2015)

Key Projects

  1. Adaptive Control: Developed a controller for a 6.25 MW wind turbine, significantly enhancing project value by $50 million.
  2. Aero-elasticity: Led the development of software for long slender blade design and validation.
  3. Floating Wind Turbine Control: Involved in modeling and experimental design for floating wind turbines.
  4. Stability Analysis: Worked on mitigating self-excited vibrations in wind turbines.

Honors and Awards

  • Second Prize for Scientific and Technological Progress from China Machinery Industry Association for his work on bend-twist adaptive control for flexible wind turbine blades, showcasing significant innovation and impact in renewable energy technology.

Publications

Dr. Zhou has multiple publications in respected journals related to wind turbine dynamics, such as:

  • Bend-twist adaptive control for flexible wind turbine blades in Mechanical Systems and Signal Processing.
  • Nonlinear vortex-induced vibration and its mitigation of wind turbines in parked conditions in Applied Mathematical Modelling.
  • Research on modeling and vortex-induced vibrations of semi-submersible floating offshore wind turbines.

Publication top notes

Bend-twist adaptive control for flexible wind turbine blades: Principles and experimental validation

Nonlinear vortex-induced vibration and its mitigation of wind turbines in parked conditions

Modeling and vortex-induced vibrations of semi-submersible floating offshore wind turbines

Dynamic deformation monitoring of cantilever beams using piezoelectric sensors: Theory and experiment

Nonlinear vortex-induced vibration of wind turbine towers: Theory and experimental validation

Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades

Investigation on dynamics of rotating wind turbine blade using transferred differential transformation method

 

Conclusion

Dr. Zhou’s blend of advanced education, extensive research experience in mechanical engineering with a focus on wind energy, notable project outcomes, and recognition in the form of awards and publications make him an excellent candidate for the Best Researcher Award. His work not only advances the field of renewable energy but also demonstrates a strong commitment to innovation and practical application in real-world scenarios.

Ayalew Mekuria | Engineering | Excellence in Research

Ayalew Mekuria | Engineering | Excellence in Research

Mr Ayalew Mekuria, Dilla University, Ethiopia

Mr. Ayalew Mekuria appears to be a suitable candidate for the Research for Excellence in Research program. Here’s an assessment of his profile:

Publication profile

orcid

Education

  • MSc. in Chemical Engineering (Process Engineering) from Dire Dawa University (2020/2022)
  • BSc. in Chemical Engineering (Food Engineering) from Debre Berhan University (2014/2018)
  • HDP (Higher Diploma Program) from Dilla University (2018/2019)

Mr. Mekuria’s educational background in chemical engineering, particularly in process and food engineering, lays a strong foundation for his research capabilities. His master’s degree equips him with advanced knowledge and skills necessary for conducting high-quality research.

Work Experience

  • Lecturer at Dilla University (2018 – Current): His responsibilities include teaching, mentoring, and research advising, indicating strong communication and leadership skills. This role also allows him to stay current with academic research trends.
  • Training Facilitator at Dereja Academy: His role as a trainer in employability skills demonstrates his commitment to enhancing students’ practical skills and readiness for the job market. This experience shows his ability to engage with industry professionals, which is essential for research applications.
  • Internship Coordinator (2022 – 2024): This position requires excellent organizational skills and the ability to liaise with various stakeholders, including companies and students. Such experience is valuable in coordinating research projects and understanding industry needs.
  • Exam Review Committee and Exit Exam Coordinator (2022 – 2023): These responsibilities involve oversight of academic standards, further showcasing his leadership and evaluative skills, critical for maintaining research integrity.

Internship Experience

  • Internship at Habesha Brewery S.C. (Oct 2015 – Jan 2016): Practical experience in the brewery industry complements his academic knowledge, providing real-world insights into chemical engineering applications.

Certifications

Mr. Mekuria’s various certifications, including:

  • Dereja Academy Accelerator Program (DAAP)
  • Employability Skill and Job Readiness Training
  • Project Management Essentials
  • Certified Professional Teacher Educator

These certifications highlight his commitment to continuous learning and development, essential traits for a researcher.

Publications

  • Publication on the development, characterization, and optimization of sulfated fat liquor from fleshing tannery solid waste in Cogent Food & Agriculture (2024). This publication demonstrates his active engagement in research and contributes to the field of food engineering and sustainability.

Conclusion

Mr. Ayalew Mekuria’s educational background, extensive work experience, practical internships, and commitment to continuous professional development position him as a strong candidate for the Research for Excellence in Research program. His ability to integrate theoretical knowledge with practical applications, alongside his active participation in research and community service, underscores his potential to contribute significantly to the research community.