Carmen-Irena Mitan | Organic Chemistry | Academic Collaboration Catalyst Award

Dr. Carmen-Irena Mitan | Organic Chemistry | Academic Collaboration Catalyst Award

Dr. Carmen-Irena Mitan, “C.D. Nenitescu” Institute of Organic and Supramolecular Chemistry, Romania

Dr. Carmen-Irena Mitan is a prominent researcher at the Institute of Organic and Supramolecular Chemistry “Costin D. Nenitzescu” of the Romanian Academy. With a Ph.D. in Organic Chemistry (2003), her work focuses on synthesizing azasugars and coumarin dyes with biological activity. She has held various academic positions, including postdoctoral researcher at the University of Illinois at Chicago. Dr. Mitan has published extensively, contributing to advancements in organic synthesis and stereochemistry. Her dedication to research and collaboration fosters innovation in the field of chemistry. 📚🌍

Publication Profile

Orcid

Academic Qualifications

Her academic credentials include a Master’s degree in Organic Chemistry (1996-1997) and a Ph.D. in Organic Chemistry (1998-2003), focusing on significant topics such as cycloaddition reactions and the synthesis of azasugars with biological activity. Such a strong academic foundation supports her ability to lead and contribute to collaborative research projects.

Extensive Research Background

Dr. Mitan has been involved in research since 1997, accumulating over two decades of experience in organic chemistry. This longevity in the field highlights her commitment and contribution to scientific inquiry.

Research Interests

Synthesis of azasugars and coumarin dyes, showcasing her expertise in synthetic organic chemistry.

Advanced studies in stereochemistry and metathesis, which could attract collaborations in cutting-edge research areas.

Characterization techniques involving NMR, IR, and MS, demonstrating her proficiency in analytical methods crucial for successful research partnerships

Conclusion

Dr. Carmen-Irena Mitan’s robust academic background, diverse research experience, and expertise in organic chemistry make her an excellent candidate for the Research for Academic Collaboration Catalyst Award. Her dedication to advancing research and fostering collaboration aligns perfectly with the goals of this award.

Publication Top Notes

  1. 3-Sphere approach on 9-O-(10,11-di-O-benzyl-12,14-O-benzylidene-alpha-D-galactopyranosyl)-1-butyl-2,3-O-isopropylidene-1,4-dideoxy-1,4-imino-1-N-dehydro-L-ribitol
    • Authors: Robert Michael Moriarty, Carmen-Irena Mitan, Emerich Bartha, Petru Filip, Rajesh Naithani, Timothy Block
    • Published in: American Journal of Quantum Chemistry and Molecular Spectroscopy
    • Year: 2024
  2. Java Script programs for calculation of dihedral angles with manifold equations
      • Authors: C.-I. Mitan, E. Bartha, P. Filip, C. Draghici, M.-T. Caproiu, R. M. Moriarty
      • Published in: Science Journal of Chemistry
      • Year: 2024
  3. Mechanistic aspects of the ring-closing enyne metathesis catalyzed by ruthenium-alkylidene complexes
    • Authors: C.-I. Mitan, P. Filip, L. Delaude, V. Dragutan
    • Published in: Journal of Organometallic Chemistry
    • Year: 2024
  4. α,ÎČ‐C—C—C Agostic Bonding Interactions in Ruthenacyclobutane and π‐Complex Assisted Olefin Metathesis Catalyzed by Ruthenium‐Alkylidene Complexes
    • Authors: Carmen‐Irena Mitan, Valerian Dragutan, Petru Filip
    • Published in: International Journal of Quantum Chemistry
    • Year: 2024
  5. 3-Sphere Tetrahedral Angles and Phase Angle of the Pseudorotation P[deg] of C1-CH3-α-D Ribitol Iminocyclitol
      • Authors: Petru Filip, Carmen Mitan, Emerich Bartha
      • Published in: Science Journal of Chemistry
      • Year: 2024
  6. 3-Sphere tetrahedral angles and phase angle of the pseudorotation P[deg] of C1-R-alpha-D ribitol
      • Authors: P. Filip, C.-I. Mitan, E. Bartha
      • Published in: Science Journal of Chemistry
      • Year: 2024
  7. 3-Sphere Torsional Angles and Six Membered Ring Conformation
    • Authors: E. Bartha, C.-I. Mitan, P. Filip
    • Published in: American Journal of Quantum Chemistry and Molecular Spectroscopy
    • Year: 2023
  8. Concerted [2+2] oxidative cycloaddition cycloreversion versus cyclopropanation reaction at M-carbene center
    • Authors: Carmen-Irena Mitan
    • Published in: Science Journal of Chemistry
    • Year: 2023
  9. Configurational and Conformational analysis of 5-deoxy-5-iodo-alpha,beta-D-ribose with 3-Sphere approach
    • Authors: C.-I. Mitan, E. Bartha, A. HĂźrtopeanu, C. Stavarache, C. Draghici, M. T. Caproiu, M. Maganu, P. Filip
    • Published in: American Journal of Quantum Chemistry and Molecular Spectroscopy
    • Year: 2023

Taek Hyeon Kim | Organic Chemistry | Best Researcher Award

Prof Dr. Taek Hyeon Kim | Organic Chemistry | Best Researcher Award

Prof Dr. Taek Hyeon Kim, Chonnam National University, South Korea

Publication profile

Academic and Professional Background

Prof. Dr. Taek Hyeon Kim earned his Ph.D. from Korea Advanced Institute of Science and Technology (KAIST). He furthered his expertise through a postdoctoral course at UC Berkeley, USA, and worked with SK Innovation in Korea. He served as the Dean of the College of Engineering at Chonnam National University. Recognized as one of the top 30 researchers by the National Research Foundation of Korea in 2002, he has published over 100 SCI papers and holds 8 Korean patents. He is a member of the Korean Chemical Society, The Polymer Society of Korea, and The Korean Society of Industrial and Engineering Chemistry.

Areas of Research

Prof. Kim’s research focuses on organocatalysis, organic synthesis, and organic synthetic methods. He has extensively studied the development of novel synthetic methodologies and chiral auxiliaries, as well as solid-phase synthesis and molecular recognition. His work contributes significantly to asymmetric reactions and the broader field of organic chemistry.

Contributions

Prof. Kim’s 30-year research career has been marked by pioneering work in organic synthetic methodologies. His initial research aimed at creating novel organic phosphorus compounds for Wittig reactions. During his postdoctoral tenure in Henry Rapoport’s group, he worked on synthesizing important organic compounds using amino acids. At Chonnam National University, he has continued to advance research on chiral auxiliaries, solid-phase synthesis, molecular recognition, and organic catalysts for asymmetric reactions.

Publication Top Notes

  • Synthesis of ethyl 3-cyano-2-methylcinnamates and 3-cyano-2-methylcinnamonitriles from the Baylis–Hillman acetates
    YM Chung, JH Gong, TH Kim, JN Kim
    Tetrahedron Letters 42 (51), 9023-9026
    📚 85 ⏳ 2001
  • Melt grafting of maleimides having hindered phenol antioxidant onto low molecular weight polyethylene
    TH Kim, DR Oh
    Polymer degradation and stability 84 (3), 499-503
    📚 72 ⏳ 2004
  • Melt free‐radical grafting of hindered phenol antioxidant onto polyethylene
    TH Kim, HK Kim, DR Oh, MS Lee, KH Chae, S Kaang
    Journal of applied polymer science 77 (13), 2968-2973
    📚 69 ⏳ 2000
  • Synthesis of 1, 3-disubstituted naphthalenes from the Baylis–Hillman acetates with the aid of manganese (III) acetate
    YJ Im, KY Lee, TH Kim, JN Kim
    Tetrahedron letters 43 (26), 4675-4678
    📚 67 ⏳ 2002
  • Regioselective construction of polysubstituted pyridine ring from Baylis–Hillman adducts via sequential introduction of tosylamide, Michael reaction, aldol condensation, and 

    MJ Lee, TH Kim, JN Kim
    Tetrahedron letters 46 (50), 8799-8803
    📚 57 ⏳ 2005
  • Efficient synthesis of 2-methylaminothiazolines via Mitsunobu reaction of N-(2-hydroxyethyl)-Nâ€Č-methyl-thioureas
    TH Kim, MH Cha
    Tetrahedron letters 40 (16), 3125-3128
    📚 54 ⏳ 1999
  • Regiocontrolled cyclization reaction of N-(2-hydroxyethyl) ureas by transfer of activation: one-pot synthesis of 2-imidazolidinones
    TH Kim, GJ Lee
    The Journal of organic chemistry 64 (8), 2941-2943
    📚 48 ⏳ 1999
  • Pd-Mediated synthesis of 7H-benzo [3, 4] azepino [1, 2-a] indole-6-carboxylic acid derivatives from indole-containing Baylis–Hillman adducts
    HS Lee, SH Kim, TH Kim, JN Kim
    Tetrahedron Letters 49 (11), 1773-1776
    📚 47 ⏳ 2008
  • Regioselective synthesis of polysubstituted phenol derivatives from Baylis–Hillman adducts via [3+ 3] annulation strategy
    SJ Kim, TH Kim, JN Kim
    Tetrahedron letters 47 (35), 6315-6319
    📚 45 ⏳ 2006
  • A mild cyclodesulfurization of N-(2-hydroxyethyl)-Nâ€Č-phenylthioureas to 2-phenylamino-2-oxazolines using TsCl/NaOH
    TH Kim, N Lee, GJ Lee, JN Kim
    Tetrahedron 57 (33), 7137-7141
    📚 41 ⏳ 2001
  • A water‐developable negative photoresist based on the photocrosslinking of N‐phenylamide groups with reduced environmental impact
    KH Chae, GJ Sun, JK Kang, TH Kim
    Journal of applied polymer science 86 (5), 1172-1180
    📚 37 ⏳ 2002
  • S-Benzyl isothiouronium chloride as a recoverable organocatalyst for the direct reductive amination of aldehydes
    QPB Nguyen, TH Kim
    Tetrahedron letters 52 (39), 5004-5007
    📚 34 ⏳ 2011


Conclusion

Prof. Dr. Taek Hyeon Kim’s extensive experience, impactful research contributions, and significant academic achievements make him a strong candidate for the Research for Best Researcher Award. His innovative work in organic synthesis and catalytic methods aligns well with the award’s criteria, highlighting his excellence and influence in the field.

 

Cheol-Hong Cheon | Organic Chemistry | Best Researcher Award

Prof Dr. Cheol-Hong Cheon | Organic Chemistry | Best Researcher Award

Prof Dr. Cheol-Hong Cheon, Korea University, South Korea

Prof. Dr. Cheol-Hong Cheon: A Candidate for the Best Researcher Award

Publication profile

Scopus

Academic Background

Prof. Dr. Cheol-Hong Cheon is a distinguished academic in the field of chemistry, with a robust educational foundation from Korea University and The University of Chicago. He earned his B.S. and M.S. in Chemistry from Korea University, followed by a Ph.D. in Chemistry from The University of Chicago, under the mentorship of Professor Hisashi Yamamoto.

Professional Experience

Dr. Cheon’s career is marked by significant academic and research positions. He served as a Post-Doctoral Research Fellow at the University of California, Berkeley, and later joined Korea University, advancing from Assistant Professor to full Professor. His tenure includes a visiting scholarship at the University of Illinois, Urbana-Champaign.

Awards and Recognitions

Dr. Cheon has received multiple prestigious awards, including the CHUNGAM POSCO Young Investigator Fellowship and several Asian Core Program Lectureship Awards from Taiwan, Thailand, and China. He was also honored with the Stone Tower Excellence in Teaching Award, highlighting his contributions to education and research.

Research Areas

Dr. Cheon’s research spans Total Synthesis, Asymmetric Synthesis, Umpolung Chemistry, and Heterocyclic Chemistry. His innovative approaches in these areas have led to significant advancements in organic chemistry.

Representative Publications

Dr. Cheon has authored numerous high-impact publications. Notable works include the asymmetric total synthesis of Iheyamine B and the total synthesis of Rucaparib, which was recognized as a highly downloaded paper and highlighted in Synfacts. His research has consistently contributed to the field, earning recognition and citations in leading journals.

Conclusion

Prof. Dr. Cheol-Hong Cheon’s extensive academic background, significant professional experience, numerous awards, and impactful research contributions make him a suitable candidate for the Best Researcher Award. His dedication to advancing the field of chemistry through innovative research and education underscores his qualification for this prestigious recognition.

 

 

 

 

 

 

 

Najmeh Nowrouzi | Organic Chemistry Award | Best Researcher Award

Assoc Prof Dr. Najmeh Nowrouzi | Organic Chemistry Award | Best Researcher Award

Assoc Prof Dr. Najmeh Nowrouzi, Persian Gulf University, Iran

Dr. Najmeh Nowrouzi is an accomplished associate professor at Persian Gulf University, specializing in Organic Chemistry. She earned her Ph.D. from Shiraz University in 2008. With notable achievements including the Top Researcher awards in 2014 and 2016, her research spans phosphorus compounds, ionic liquids, and nanocompounds. Dr. Nowrouzi has a prolific publication record, contributing to numerous high-impact journals and conferences. Her work focuses on innovative chemical syntheses and catalysis, particularly involving organometallic chemistry and green chemistry approaches.

Publication profile:

Google scholar

Educational Background:

Dr. Najmeh Nowrouzi has had an extensive and rigorous academic journey. She completed her high school education at Tohid High School in Shiraz, Iran, in 1997. Following this, she pursued a Bachelor of Science in Chemistry at Shiraz University from 1998 to 2002, then continued at the same institution to earn her Master’s in Organic Chemistry between 2002 and 2004. Dr. Nowrouzi’s commitment to her field culminated in a Ph.D. in Organic Chemistry from Shiraz University, which she completed in 2008. 🎓🔬

Awards and Honors:

Dr. Nowrouzi has been recognized for her outstanding contributions to science. She was named the top researcher of the Faculty of Sciences at Persian Gulf University in 2014 and subsequently received the prestigious accolade of being the top researcher in Bushehr Province in 2016. 🏆🏅

Research Focus:

The research focus of N. Nowrouzi primarily lies in organic synthesis and catalysis, with a strong emphasis on green chemistry. đŸ§Ș🌿 The work involves developing novel methodologies for converting various functional groups, such as alcohols, thiols, and ethers, into valuable compounds like alkyl cyanides, azides, and nitriles using triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone systems. 🔄🔬 The research also explores efficient nitration techniques under neutral conditions, novel catalysts for cross-coupling reactions, and the use of ionic liquids and biodegradable polymers for sustainable chemical processes. 🌍🔋 This work aims to advance environmentally friendly practices in chemical synthesis and catalysis. â™»ïžđŸŒŸ

Publication Top Notes: