Njemuwa Nwaji | Energy Storage Award | Excellence in Research

Dr. Njemuwa Nwaji | Energy Storage Award | Excellence in Research

Dr. Njemuwa Nwaji, Institute of Fundamental Technological Research, Polish Academy of Science, Poland

Dr. Njemuwa Nwaji is a distinguished chemist with a Ph.D. in Chemistry from Rhodes University, South Africa (2016-2018, awarded April 2019) πŸ§ͺ. She earned her M.Sc. in Organic Chemistry from the University of Central Lancashire, UK (2012-2013, awarded March 2014) 🏴, and her B.Tech. in Industrial Chemistry from the Federal University of Technology, Owerri, Nigeria (2002-2006, awarded October 2006) 🌍. Dr. Nwaji is proficient in various operating systems and software, including Windows and Mac OS, with expertise in vector graphics and photo editing πŸ–₯️. She is fluent in English and Igbo, with basic knowledge of Korean πŸ‡°πŸ‡·.

 

Publication Profile

Google Scholar

πŸŽ“ Education and Degrees Awarded

Dr. Njemuwa Nwaji holds a Ph.D. in Chemistry from Rhodes University, South Africa, completed between 2016 and 2018, and awarded in April 2019 πŸ§ͺ. She earned her M.Sc. in Organic Chemistry from the University of Central Lancashire, UK, from 2012 to 2013, awarded in March 2014 🏴. She also has a B.Tech. in Industrial Chemistry from the Federal University of Technology, Owerri, Nigeria, completed from 2002 to 2006, and awarded in October 2006 🌍.

πŸ§‘β€πŸ« Teaching Experiences

Dr. Njemuwa Nwaji served as a Graduate Teaching Assistant at Rhodes University, South Africa, from June 2016 to May 2018. During this time, she contributed significantly to teaching various chemistry courses. For CHE 101 and CHE 102 (General Chemistry), she was part of a team teaching 150 students from diverse backgrounds. She developed practice quizzes and assignments tailored to the course content. In CHE 113, she taught and demonstrated practical experiments for undergraduate students, focusing on organic chemistry lab techniques. Additionally, for CHE 201, she was involved in team teaching a class of 85 students, where she developed and taught topics in spectroscopic methods, and created related quizzes and assignments.

Research Focus

Dr. Njemuwa Nwaji’s research primarily centers on the synthesis and characterization of advanced nanomaterials and their applications in various scientific fields πŸ§ͺ. She has contributed extensively to the development of nanostructures, including biogenic zinc oxide nanoflowers, and their use in photodegradation and as tyrosinase inhibitors . Her work involves exploring the photophysical and nonlinear optical properties of phthalocyanines and their derivatives, particularly in solutions, thin films, and when conjugated to nanoparticles 🌟. Dr. Nwaji also investigates the potential of these materials for photodynamic therapy and photocatalytic wastewater treatment, highlighting her commitment to sustainable and innovative technological solutions 🌍 .

Publication Top Notes

Green synthesis of biogenic zinc oxide nanoflower as dual agent for photodegradation of an organic dye and tyrosinase inhibitor

Corrosion resistance of aluminum against acid activation: Impact of benzothiazole-substituted gallium phthalocyanine

Improved nonlinear optical behaviour of ball type indium (III) phthalocyanine linked to glutathione capped nanoparticles

Low symmetric metallophthalocyanine modified electrode via click chemistry for simultaneous detection of heavy metals

Glycosylated zinc phthalocyanine-gold nanoparticle conjugates for photodynamic therapy: Effect of nanoparticle shape

Photophysicochemical properties and photodynamic therapy activity of chloroindium (III) tetraarylporphyrins and their gold nanoparticle conjugates

Investigation of photophysicochemical properties of zinc phthalocyanines conjugated to metallic nanoparticles

Nonlinear optical dynamics of benzothiazole derivatized phthalocyanines in solution, thin films and when conjugated to nanoparticles

Synthesis, photophysical and nonlinear optical properties of a series of ball-type phthalocyanines in solution and thin films

Synthesis, photophysical and nonlinear optical properties of a series of ball-type phthalocyanines in solution and thin films