Syed Faizan | Chemistry | Best Researcher Award

Syed Faizan | Chemistry | Best Researcher Award

Mr Syed Faizan, National Centre of Excellence in Physical Chemistry, University of Peshawar, Pakistan

Syed Faizan is a dedicated academic and researcher from Peshawar, Pakistan. He holds an MPhil in Physical Chemistry from the University of Peshawar and a Bachelor’s degree in Education from Qurtaba University. With expertise in applied chemistry and physical chemistry, Faizan has lectured at various institutions, including the University of Wah and the Govt. Polytechnic Institute, Peshawar. His research focuses on electrochemical applications, polymer hydrogels, and environmental chemistry, with several publications in esteemed journals. Faizan is an active participant in international conferences and seminars, contributing to scientific advancements in material science and environmental solutions. πŸŒπŸ“šπŸ”¬

Publication Profile

Scopus

Education

Mr. Syed Faizan completed his Master of Philosophy in Physical Chemistry from the National Centre of Excellence in Physical Chemistry, University of Peshawar (2018-2021). He also holds a Bachelor’s degree in Education from Qurtaba University (2019-2021). His foundational studies include a Bachelor’s in Chemistry from the Institute of Chemical Sciences, University of Peshawar (2013-2017). Earlier, he completed his Intermediate (HSSC) at Karnal Sher Khan Cadet College (2011-2013) and his High School (SSC) at Peshawar Model School (2009-2011). Mr. Faizan is passionate about advancing knowledge in chemistry and education. πŸŒŸπŸ“š

Experience

Syed Faizan, a dedicated educator and school leader, has been shaping the educational landscape in Peshawar, Pakistan. He currently serves as a School Leader at the KP Elementary and Secondary Education Department since December 2022, overseeing administration and ensuring the quality of teaching and student education. Previously, he worked as a Lecturer at the University of Wah and Govt. College of Technology, Peshawar, where he taught advanced subjects like Photochemistry, Physical Chemistry, and applied chemistry. Faizan also gained practical experience as a teacher and intern at various educational institutions, contributing significantly to chemistry education at multiple levels. πŸ“šπŸ”¬

Conference Participation

Mr. Syed Faizan has actively participated in various international seminars and workshops, emphasizing his dedication to staying updated with global research trends. His engagement covers key topics such as the significance of intellectual property rights for scientists and advanced electrochemical research. These experiences reflect his passion for expanding his knowledge and contributing to the ever-evolving field of chemistry. Through these international platforms, Syed Faizan enhances his expertise while maintaining a strong focus on the latest scientific advancements and industry developments. πŸŒπŸ”¬

Research Focus

Mr. Syed Faizan’s research focuses on the development and application of polymer hydrogels, particularly in environmental and electronic fields. His work explores the electrochemical and mechanical properties of polyacrylic acid-based hydrogels through dual crosslinking for wearable electronics and their use in sensing hazardous materials. He investigates their potential in wastewater treatment, particularly for dye removal, and the optimization of polymer composites for hazardous dye detection. Faizan’s expertise spans environmental science, materials engineering, and electrochemistry. His work supports sustainability in water treatment and advances the field of flexible electronics. πŸŒ±βš™οΈπŸ”¬πŸ’§

Publication Top Notes

Electrochemical and mechanical properties control in polyacrylic acid based polymer hydrogels via dual crosslinking for wearable electronics

Polymer composite for low-level detection of hazardous dyes: electrochemical sensing behavior

Detection and removal of Congo red via aniline-based polymer and polymer composite

Nature of cross-linking matters for the conditional removal of CV from wastewater by interpenetrating network hydrogels

Fabrication of bio-polymer-based hydrogel for methylene blue remediation: Kinetics, mechanisms, and environmental implications

Effects of Cu2+/Zn2+Β on the electrochemical performance of polyacrylamide hydrogels as advanced flexible electrode materials

 

Dinesh Kumar Chelike | Inorganic Chemistry | Best Researcher Award

Dr. Dinesh Kumar Chelike | Inorganic Chemistry | Best Researcher Award

Dr. Dinesh Kumar Chelike, Rungta College of Engineering and Technology Bhilai, India

Dr. Dinesh Kumar Chelike is an Assistant Professor of Chemistry at Rungta College of Engineering & Technology, Bhilai, India. With a Ph.D. in Chemistry from SRM Institute of Science and Technology, he specializes in developing non-isocyanate polyurethanes (NIPU) for drug delivery and battery applications, as well as fluorescent materials for metal ion sensing and hybrid inorganic-organic materials for optical/sensor applications. Dr. Chelike has held a Senior Research Associate position at Clearsynth R&D Lab and has contributed to over 11 peer-reviewed articles, 2 book chapters, and 1 patent. He has been awarded the RARE Award 2024 and the Young Research Award 2020. πŸŒŸπŸ”¬πŸ“š

Publication profile

Google Scholar

Orcid

πŸŽ“ Education

Dr. Dinesh Kumar Chelike holds a PhD in Chemistry from SRM Institute of Science and Technology, Chennai (2022), with a focus on hybrid inorganic-organic molecules and non-isocyanate polyurethanes. He completed his MSc in Chemistry from Karunya Institute of Technology & Sciences, Coimbatore (2017), and a BSc in Chemistry from Kalayan P.G. College, Bhilai (2015).

πŸ‘¨β€πŸ« Professional Experience

Currently an Assistant Professor in Chemistry at Rungta College of Engineering & Technology, Bhilai, Dr. Chelike has also served as a Senior Research Associate at Clearsynth R&D Lab, Secunderabad. He is a prolific researcher with a focus on sustainable materials and sensor applications.

πŸ† Awards & Achievements

Dr. Chelike has received multiple accolades, including the RARE Award-2024 and the Young Research Award 2020 from the Institute of Scholar, Bangalore. He has a patent on sustainable non-isocyanate polyurethanes and has published extensively in high-impact journals.

 

Research Focus

DK Chelike is focused on the development of biodegradable and sustainable materials, particularly in the realm of polyurethanes and nanocomposites. 🌱 Their research includes optimizing biodegradable polyurethane foams for footwear to reduce waste, synthesizing isocyanate-free polyurethane films, and creating plant-derived iron oxide nanoparticles for environmental applications. Chelike’s work extends to the valorization of lignocellulosic biomass via fungal biodegradation and the formulation of non-isocyanate polyurethanes from vegetable oils. This research highlights a commitment to advancing eco-friendly materials with applications in reducing pollution, enhancing sustainability, and promoting green chemistry. πŸŒΏπŸ”¬

Publication Top Notes

  • Biodegradable polyurethane foam as shoe insole to reduce footwear waste: Optimization by morphological physicochemical and mechanical properties πŸ₯ΏπŸ”¬
    Applied Surface Science 499, 143966
    Cited by: 39 Year: 2020
  • Biodegradable polyurethanes foam and foam fullerenes nanocomposite strips by one-shot moulding: Physicochemical and mechanical properties πŸ“πŸ§ͺ
    Materials Science in Semiconductor Processing 112, 105018
    Cited by: 26 Year: 2020
  • Functionalized iron oxide nanoparticles conjugate of multi-anchored Schiff’s base inorganic heterocyclic pendant groups: Cytotoxicity studies βš›οΈπŸ’Š
    Applied Surface Science 501, 143963
    Cited by: 23 Year: 2020
  • Tunable yellow–green emitting cyclotriphosphazene appended phenothiazine hydrazone hybrid material: Synthesis, characterisation, photophysical and electrochemical studies πŸŒˆπŸ”‹
    New Journal of Chemistry 44 (31), 13401-13414
    Cited by: 12 Year: 2020
  • Biodegradable isocyanate-free polyurethane films via a noncatalytic route: facile modified polycaprolactone triol and biobased diamine as precursors β™»οΈπŸ§«
    RSC Advances 13 (1), 309-319
    Cited by: 4 Year: 2023
  • Catalyzed and Non‐catalyzed Synthetic Approaches to Obtain Isocyanate‐free Polyurethanes πŸ”¬πŸ§©
    ChemistrySelect 8 (26), e202300921
    Cited by: 2 Year: 2023
  • A recent review of the synthesis of plant-derived iron oxide nanoparticles for metal ion removal 🌿🧲
    Inorganic Chemistry Communications, 112611
    Cited by: β€” Year: 2024
  • Utilizing Fungal Biodegradation for Valorisation of Lignocellulosic Waste Biomass and Its Diverse Applications πŸ„β™»οΈ
    Applied Research
    Cited by: β€” Year: 2024
  • Biorenewable vegetable oil based nonisocyanate polyurethanes and nanocomposites; formulation, characterisation, biodegradation, anticorrosion and antifouling coatings 🌾🧴
    New Journal of Chemistry 48 (12), 5173-5185
    Cited by: β€” Year: 2024
  • CYCLOPHOSPHAZENE BASED HYBRID INORGANIC-ORGANIC MOLECULES AND NON-ISOCYANATE POLYURETHANES FOR SUSTAINABILITY πŸ”„πŸŒ
    SRM Institute of Science and Technology Chennai
    Cited by: β€” Year: 2022