Chryslaine Rodríguez-Tanty | Chemistry Award | Best Researcher Award

Mrs. Chryslaine Rodríguez-Tanty | Chemistry Award | Best Researcher Award

Mrs. Chryslaine Rodríguez-Tanty, Centro de Neurociencias de Cuba, Cuba

Mrs. Chryslaine Rodríguez-Tanty is a prominent researcher focused on Alzheimer’s disease and neurodegeneration. She is known for her work on Amylovis-201, a dual-target ligand that acts as an anti-amyloidogenic compound and a potent σ1 receptor agonist. Her research demonstrates Amylovis-201’s effectiveness in inhibiting Aβ peptide aggregation and its neuroprotective effects through σ1 receptor activation. Chryslaine’s contributions are pivotal in developing innovative therapies for neurodegenerative diseases. 🧠💊🔬

Publication profile

Scopus

Google Scholar

Research Focus

Chryslaine Rodríguez-Tanty is primarily focused on the development of therapeutic agents targeting neurodegenerative diseases and other conformational disorders. Her work includes the study of amyloid structures, drug discovery for Alzheimer’s disease, and the development of chemical chaperones. She has also contributed to research on polymorphic amyloid structures in diabetes and the synthesis of peptide-oligonucleotide hybrids. Chryslaine’s research spans organic chemistry, biochemistry, and pharmacology, aiming to create innovative treatments for complex diseases. 🧬🧠💊🔬

Publication Top Notes

  • Drug development in conformational diseases: A novel family of chemical chaperones that bind and stabilise several polymorphic amyloid structures – PLoS One 10 (9), e0135292, 2015 (Cited by: 30) 🧬💊
  • Diabetes Drug Discovery: hIAPP1–37 Polymorphic Amyloid Structures as Novel Therapeutic Targets – Molecules 23 (3), 686, 2018 (Cited by: 27) 🩺🍬
  • [18F] Amylovis as a Potential PET Probe for β-Amyloid Plaque: Synthesis, in Silico, in vitro and in vivo Evaluations – Current Radiopharmaceuticals 12 (1), 58-71, 2019 (Cited by: 17) 🧠🔬
  • Alternative Procedures for the Synthesis of Methionine‐Containing Peptide− Oligonucleotide Hybrids – European Journal of Organic Chemistry 2000 (13), 2495-2500, 2000 (Cited by: 16) 🧬🧪
  • A new naphthalene derivative with anti-amyloidogenic activity as potential therapeutic agent for Alzheimer’s disease – Bioorganic & Medicinal Chemistry 28 (20), 115700, 2020 (Cited by: 14) 🧠💊
  • Use of a chimeric synthetic peptide from the core p19 protein and the envelope gp46 glycoprotein in the immunodiagnosis of HTLV-II virus infection – Preparative Biochemistry and Biotechnology 33 (1), 29-38, 2003 (Cited by: 10) 🦠🧬
  • Introduction of an immunochemical label in a cytidine analogue – Nucleosides, Nucleotides & Nucleic Acids 14 (1-2), 219-228, 1995 (Cited by: 10) 🧪🔬
  • 2′, 3′-Didehydro-3′-deoxythymidine N-methyl-2-pyrrolidone solvate (D4T· NMPO) – Acta Crystallographica Section C: Crystal Structure Communications 56 (5), 2000 (Cited by: 9) 🔬🧬
  • Synthesis of 5-Methyl-2′-O-Deoxycytidine Analogs to Determine Monoclonal Antibody Specificity in the Recognition of the 6-(p-Bromobenzoylamino) Caproyl – Nucleosides & Nucleotides 16 (4), 455-467, 1997 (Cited by: 8) 🧪🔬
  • Identificación y caracterización in silico de la zona de interacción entre el péptido beta-amiloide y compuestos derivados del naftaleno – Revista CENIC. Ciencias Químicas 43, 2012 (Cited by: 7) 🧠🔍