Dr. Zongke He | Materials Science | Best Researcher Award

Dr. Zongke He | Materials Science | Best Researcher Award

Dr. Zongke He, CCTEG Coal Mining Research Institute, China

Dr. Zongke He holds a PhD in Polymer Chemistry and Physics. He specializes in the design, synthesis, and application of functional polymer materials, particularly in stimulus-responsive cross-linked polymers. His work utilizes advanced techniques like Diels-Alder chemistry and dynamic imine bonding. Notably, he has developed moisture-activated in situ crosslinking techniques for flame-retardant poly(urethane-urea). Dr. He has contributed significantly to ongoing national projects and holds 20 patents, with multiple publications in prestigious journals. He is a member of the Mining Excavation and Support Professional Committee of the Chinese Society of Rock Mechanics and Engineering. 🔬📚💡

 

Publication Profile

Orcid

Academic and Professional Background

Dr. Zongke He is an Associate Researcher at the CCTEG Coal Mining Research Institute in China. He earned his PhD in Polymer Chemistry and Physics, specializing in the design, synthesis, and application of advanced functional polymer materials. His research focuses on developing stimulus-responsive polymers, including the use of Diels-Alder chemistry and dynamic bonding techniques. Dr. He is committed to innovating in areas such as flame-retardant materials and polymeric hydrogels, contributing significantly to both academic and industrial advancements in material science. His work plays a crucial role in enhancing the functionality of polymer-based materials. 🔬💡📚

 

Research and Innovations

 

Dr. Zongke He is actively engaged in several cutting-edge research projects. He is currently working on the Natural Science Foundation of China (No. 52304138) and the National Key Research and Development Program of China (No. 2023YFC2907602). With a citation index of 6, Dr. He has contributed significantly to scientific literature. In addition to his academic work, he is involved in consultancy and industry projects, including the CCTEG Coal Mining Research Institute Science and Technology Innovation Fund (No. KCYJY-2024-MS-09) and a key research project with China Coal Science and Industry Group. He holds 20 patents and has published numerous SCI and Scopus-indexed journals. 🔬📈📝💡

 

Research Contributions

Dr. Zongke He is an Associate Researcher at the CCTEG Coal Mining Research Institute in China, with a PhD in Polymer Chemistry and Physics. His research focuses on the design, synthesis, and application of innovative functional polymer materials. He specializes in stimulus-responsive cross-linked polymers, utilizing advanced techniques like Diels-Alder chemistry, dynamic imine bonding, and [4+4] cycloaddition of anthracene derivatives. In the field of flame-retardant materials, Dr. He has pioneered an in situ crosslinking technique activated by moisture, which imparts intrinsic flame retardancy to poly(urethane-urea). 🔬⚗️🔥

 

PublicationTop Notes

  • Coal roadway rapid driving technology and equipment with integrated drilling and anchoring and its applicationMeitan Xuebao/Journal of the China Coal Society, 2024 | Cited by: 6 | DOI: 10.13225/j.cnki.jccs.2023.1675
  • Synthesis and Properties of Moisture‐Crosslinkable Poly(Urethane‐Urea) With Intrinsic Flame RetardancyAdvances in Polymer Technology, 2024 | Cited by: 5 | DOI: 10.1155/2024/2630613
  • Elastomeric polyolefin vitrimer: Dynamic imine bond cross-linked ethylene/propylene copolymerPolymer, 2021 | Cited by: 15 | DOI: 10.1016/j.polymer.2021.124015
  • Thermoreversible cross-linking of ethylene/propylene copolymers based on Diels-Alder chemistry: The cross-linking reaction kineticsPolymer Chemistry, 2020 | Cited by: 20 | DOI: 10.1039/d0py01046d
  • UV-Light Responsive and Self-Healable Ethylene/Propylene Copolymer Rubbers Based on Reversible [4 + 4] Cycloaddition of Anthracene DerivativesMacromolecular Chemistry and Physics, 2020 | Cited by: 12 | DOI: 10.1002/macp.202000096
  • Poly(ethylene-co-propylene)/poly(ethylene glycol) elastomeric hydrogels with thermoreversibly cross-linked networksPolymer Chemistry, 2019 | Cited by: 18 | DOI: 10.1039/c9py00824a
  • Thermoreversible cross-linking of ethylene/propylene copolymer rubbersPolymer Chemistry, 2017 | Cited by: 22 | DOI: 10.1039/c7py00896a
  • Poly(ethylene-co-propylene)/Poly(ethylene glycol) Elastomeric Hydrogels with Thermoreversibly Cross-linked NetworksPolymer Chemistry, 2019 | Cited by: 10 | DOI: 10.1039/c9py00824a

Sharad Patil | Materials Science | Best Researcher Award

Mr. Sharad Patil | Materials Science | Best Researcher Award

Mr. Sharad Patil, S. S. M. M. Arts, Science and Commerce College, Pachora, India

Dr. Sharad Bhimrao Patil, currently serving as an Assistant Professor of Physics at S.S.M.M. College, Pachora, is an accomplished researcher with over 10 years of teaching experience. He holds a Ph.D. in Physics from KBCNMU, Jalgaon, and has published 37 research papers in international journals, many of which are included in the UGC care list. His research interests include thin films physics, gas sensors, and photoconductive materials. He is also the author of a book on thin film technology and has participated in various academic activities, including NAAC coordination and the mentorship of students. Dr. Patil actively contributes to research as a reviewer for three international journals and has attended 16 national and international conferences.

Publication profile

Scopus


Academic Qualifications 🎓

Mr. Sharad Patil holds a Ph.D. in Physics from Kavayitri Bahinabai Chaudhari North Maharashtra University (KBCNMU), Jalgaon. Prior to that, he completed his M.Sc. in Physics from the same university, graduating with first-class honors (66.75%). He also earned his B.Sc. in Physics from NMU, Jalgaon, securing a first-class distinction with 64.83%. His earlier academic journey includes completing his H.S.C. from Nasik with 55.67% (second class) and his S.S.C., where he achieved an impressive 72% and a first-class distinction. 📘✨

 

Research Activities

Mr. Sharad Patil’s research spans diverse fields, including environmental studies and material science. His graduation project focused on water and soil pollution’s impact on global warming, while his post-graduation work involved synthesizing and characterizing Zn-doped CdS thin films. His research interests include gas sensors (NH₃, CO₂, Cl₂, H₂, etc.), thin/thick films physics, photoconducting materials, and sunscreen lotions. Skilled in techniques such as spray pyrolysis, chemical bath deposition, and sol-gel, he handles advanced instruments like static gas sensing and Hall measurement setups. Additionally, he actively participates in college events, NAAC coordination, and research guidance. ⚗️🌍

 

Research Focus 🔬🌡️

Mr. Sharad Patil’s research focuses on gas sensor technology, nanostructured materials, and thin film development. His work includes the synthesis and characterization of materials like ZnO, SnO₂, and WO₃ for gas sensing applications such as H₂S, Cl₂, CO, and ethanol detection. He has explored techniques like spray pyrolysis, sol-gel, and chemical bath deposition. His studies emphasize improving gas sensor performance, operability at room temperatures, and enhancing sensitivity. With notable publications in materials science, sensor development, and nanostructures, Mr. Patil contributes significantly to advanced gas sensor technologies and environmental monitoring. 🌍🧪

 

Publication Top Notes

  • Comparative study of temperature-dependent H₂S gas sensing performance of M-ZrO₂ thick film resistors (M = Cd, Cu, Cr), 2017, Sensor Letters 📄 (1 citation)
  • Conventional gas sensor application of nanostructured WO₃ thin films, 2015, Sensor Letters 📄 (3 citations)
  • Room temperature cigarette smoking sensing performance of nanostructured SnO₂ thin films, 2015, International Journal of ChemTech Research 📄 (2 citations)
  • Nanostructured V₂O₅ thin films prepared by spray pyrolysis technique for NO₂ sensor, 2015, International Journal of ChemTech Research 📄 (3 citations)
  • Perovskite nanostructured CdSnO₃ thin films as Cl₂ gas sensor operable at room temperature, 2015, Sensor Letters 📄 (3 citations)
  • Synthesis, characterization and gas sensing performance of sol-gel prepared nanocrystalline SnO₂ thin films, 2014, International Journal on Smart Sensing and Intelligent Systems 📄 (13 citations)
  • Detection of H₂S gas at lower operating temperature using sprayed nanostructured In₂O₃ thin films, 2013, Bulletin of Materials Science 📄 (24 citations)
  • Effect of molarity of precursor solution on properties of nanocrystalline ZnO thin films, 2013, Materials Technology 📄 (2 citations)
  • Spray pyrolysed nanostructured ZnO thin film sensors for ethanol gas, 2012, Sensors and Transducers 📄 (7 citations)
  • Influence of precursor concentration solution on CO sensing performance of sprayed nanocrystalline SnO₂ thin films, 2012, Optoelectronics and Advanced Materials, Rapid Communications 📄 (3 citations)

Conclusion

Dr. Sharad Bhimrao Patil stands out as a strong contender for the Best Researcher Award, with 37 published research papers in international and UGC care-listed journals, emphasizing his expertise in thin-film technology and gas sensors. With over 10 years of teaching and research experience, he has mentored students, served as a reviewer for international journals, and mastered advanced techniques such as spray pyrolysis and sol-gel. Dr. Patil’s academic contributions include authoring a book on thin-film technology, holding multiple academic roles, and coordinating NAAC activities, demonstrating his leadership and innovation in the scientific community.

 

Zhihai Ke | Materials Science Award | Best Researcher Award

Prof Dr. Zhihai Ke | Materials Science Award | Best Researcher Award

Prof Dr. Zhihai Ke, The Chinese University of Hong Kong, Shenzhen, China

 

Prof. Dr. Zhihai Ke is an Assistant Professor and the Director of the Undergraduate Chemistry Programme at The Chinese University of Hong Kong, Shenzhen. He earned his Ph.D. in Chemistry from The Chinese University of Hong Kong in 2012, following a B.Sc. in Applied Chemistry from Sun Yat-Sen University in 2008. He completed postdoctoral research at the National University of Singapore. Prof. Ke specializes in catalysis, organic synthesis, and material chemistry, contributing extensively to journals like ACS Catalysis, Angewandte Chemie, and Small. His work often explores metal-organic frameworks and single-atom catalysts. He holds an ORCID ID and is an active scholar on Google Scholar.

Publication profile

Orcid

Google scholar

Academic Qualifications 🎓

Prof. Dr. Zhihai Ke’s academic journey began with a B.Sc. in Applied Chemistry from Sun Yat-Sen University (2004-2008), followed by a Ph.D. in Chemistry from The Chinese University of Hong Kong (2008-2012). He then advanced his career as a Postdoctoral Fellow in the Department of Chemistry at the National University of Singapore from October 2012 to July 2015. Subsequently, he served as a Research Assistant Professor at The Chinese University of Hong Kong until July 2020. Currently, he is the Director of the Undergraduate Chemistry Programme and an Assistant Professor at the School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, where he continues to contribute to the field of chemistry. 🌟

 

Awards and Recognition 🏆

Prof. Dr. Zhihai Ke has received several prestigious awards throughout his career, highlighting his contributions to the field of chemistry. In 2018, he was honored with the Asian Core Program Lectureship Award (Asia核心项目讲座奖), recognizing his excellence in academic presentations. In 2021, he was designated as a Shenzhen Overseas High-Caliber Personnel (Level C) and named a Presidential Young Scholar (校长青年学者), showcasing his impactful research. He further distinguished himself in 2023 with the Open Science Excellent Author Program award, followed by the 2023 Excellent Performance Grant, celebrating his outstanding achievements in academia and research. 🌟

 

Research Focus Areas 🔬

Prof. Dr. Zhihai Ke’s research primarily revolves around catalysis and synthetic chemistry, focusing on innovative methodologies for asymmetric synthesis and reaction mechanisms. His notable contributions include the development of catalytic processes such as bromoetherification, bromocyclization, and enantioselective transformations using various Lewis acids and base catalysts. Additionally, his work on peptidomimetics and organogels showcases his interest in designing broad-spectrum inhibitors, particularly against viral proteases. Prof. Ke’s research also emphasizes the exploration of novel materials, including metallogels and nanostructures, highlighting a commitment to advancing green chemistry and sustainable practices. 🌱✨

 

Publication Top Notes  

  • Catalytic Asymmetric Bromoetherification and Desymmetrization of Olefinic 1,3-Diols with C2-Symmetric Sulfides – Cited by: 182 (2014) 📄
  • Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases – Cited by: 105 (2013) 🦠
  • A Platinum(II) Terpyridine Metallogel with an L‐Valine‐Modified Alkynyl Ligand: Interplay of Pt⋅⋅⋅Pt, π–π and Hydrogen‐Bonding Interactions – Cited by: 96 (2013) 💎
  • Applications of selenonium cations as Lewis acids in organocatalytic reactions – Cited by: 90 (2018) ⚗️
  • Conformational and supramolecular properties of main chain and cyclic click oligotriazoles and polytriazoles – Cited by: 87 (2010) 📚
  • Lewis base catalyzed stereo‐and regioselective bromocyclization – Cited by: 80 (2017) 🔄
  • Electrochemical self-assembly of ZnO nanoporous structures – Cited by: 80 (2007) ⚡
  • Desymmetrizing enantio-and diastereoselective selenoetherification through supramolecular catalysis – Cited by: 77 (2018) 🧪
  • Electrochemical synthesis of orientation-ordered ZnO nanorod bundles – Cited by: 61 (2007) 🌐
  • Lewis basic sulfide catalyzed electrophilic bromocyclization of cyclopropylmethyl amide – Cited by: 48 (2015) ⚙️

Conclusion

Prof. Dr. Zhihai Ke is highly suitable for the Best Researcher Award. His achievements, leadership, and multiple prestigious awards mark him as an outstanding researcher in the field of chemistry.

Jiankang Wang | Material forming | Best Researcher Award

Prof Dr. Jiankang Wang | Material forming | Best Researcher Award

Prof Dr. Jiankang Wang, Tianjin University Science and Technology, China

Dr. Wang Jian-kang is an accomplished Chinese engineer and academic specializing in polymer processing and microcellular foaming. Currently an assistant professor at Tianjin University Science and Technology, he holds a Ph.D. from South China University of Technology and has a robust publication record including patents and research papers. His expertise spans plastics extrusion, injection molding, and computational fluid dynamics, with a focus on optimizing manufacturing processes. Recognized for his contributions, Dr. Wang has received several awards, showcasing his excellence in teaching and research. Fluent in English and Chinese, he continues to advance knowledge in materials science and engineering. 🌟

 

Publication profile

Scopus

Academic Journey

Dr. Wang Jian-kang, born on December 30, 1978, in Shanxi province, China, currently serves as an assistant professor at Tianjin University Science and Technology. He obtained his bachelor’s degree from Dalian University of Technology in 2000, followed by a master’s and doctoral degree from South China University of Technology in 2004 and 2007, respectively. His doctoral research, supervised by Prof. Huang Han-xiong, focused on designing microcellular injection molding machines and studying cellular morphology influences.

Awards and Recognition 🏆

Dr. Wang has received accolades including “Excellent Teacher” in Zhuhai City and at Zhuhai College of Jilin University. His dedication to innovation and academic rigor underscores his commitment to advancing materials science and technology.

Research Focus

Dr. Wang Jian-kang’s research primarily focuses on advancing the field of microcellular injection molding. His studies delve into optimizing cellular structure and skin layer thickness using innovative equipment, aiming to enhance the performance and characteristics of molded parts. Through experimental investigations and numerical simulations, he explores the effects of variables like nano-particles and blend compositions on foamed materials. Dr. Wang’s work, highlighted in numerous conference papers and journal articles, contributes significantly to understanding nucleation, cell growth dynamics, and the influence of viscoelastic properties in polymer blends. His research underscores a commitment to refining manufacturing processes for improved material properties and applications. 🔬

Publication Top Notes

Equipment development and experimental investigation on the cellular structure of microcellular injection molded parts

Bing Bai | Advanced Materials Award | Best Researcher Award

Prof Dr. Bing Bai | Advanced Materials Award | Best Researcher Award

Prof Dr. Bing Bai, Beijing jiaotong University, China

Prof. Dr. Bing Bai, born October 1966, is a distinguished male professor and doctoral supervisor at Beijing Jiaotong University, China 🇨🇳. With over 180 papers in international journals and 10 academic books, he’s a prominent figure in geotechnical engineering. Honored with the Beijing Natural Science Award and the Ministry of Education’s Natural Science Prize, his research is internationally acclaimed. Named among the “World’s Top 2% Scientists” by Stanford University for three years, he also received the prestigious “Scott Sloan Award” from the Royal Academy of Sciences. Serving on editorial boards and professional committees, he’s a leading authority in his field.

 

Publication Profile

Education and Experience 🎓

Prof. Dr. Bai Bing, born in October 1966, is a distinguished professor and doctoral supervisor at Beijing Jiaotong University, China. With an illustrious academic journey, he has authored over 180 papers in esteemed international journals and edited 10 academic monographs and textbooks.

Academic Achievements 🏆

His groundbreaking research has earned him prestigious accolades including the Beijing Natural Science Award and the Natural Science Prize from the Ministry of Education of China. He’s been consistently recognized among the “World’s Top 2% Scientists” by Stanford University. Notably, he clinched the esteemed “Scott Sloan Award for best paper in 2021” from the Royal Academy of Sciences.

Research Focus 📚

Prof. Dr. Bing Bai’s extensive research spans across diverse domains within geotechnical and environmental engineering. His work delves into the constitutive behavior of geomaterials, including the thermo-mechanical properties of soils and sediments. He investigates the transport phenomena of contaminants and suspended particles in porous media, exploring their interaction with factors like temperature, pore structure, and hydrodynamic forces. Additionally, he’s contributed significantly to understanding consolidation processes induced by thermal loading and cyclic loading. Prof. Bai’s interdisciplinary research sheds light on critical aspects of geoenvironmental problems, offering valuable insights for sustainable underground construction and environmental management.

 

Pozhhan Mokhtari | Building Materials | Best Researcher Award

Dr. Pozhhan Mokhtari | Building Materials | Best Researcher Award

Dr. Pozhhan Mokhtari, University of Illinois at Urbana-Champaign, United States

Dr. Pozhhan Mokhtari is a postdoctoral research associate at the University of Illinois Urbana-Champaign, specializing in Materials Science and Engineering. With a Ph.D. from Sabanci University and an M.Sc. from Middle East Technical University, his expertise spans composite materials and geotechnical engineering. His doctoral thesis focused on innovative, eco-friendly composite binders for construction. Previously, he conducted stability analyses of mining structures and studied mining economies. 🎓 Dr. Mokhtari’s research contributes to sustainable materials and infrastructure development, enhancing understanding in both academic and practical fields.

Publication Profile:

Orcid

Google Scholar

 

Education and qualifications :

Dr. Pozhhan Mokhtari’s academic journey embodies a fusion of expertise in materials science and engineering, alongside a foundation in mining engineering. He obtained his Ph.D. from Sabanci University, pioneering research into eco-friendly composite binders for construction. Under the guidance of Prof. Mehmet Ali Gulgun, his work aimed at creating cost-effective and sustainable solutions for the industry. Prior, his M.Sc. at Middle East Technical University delved into geotechnical engineering, particularly analyzing stability in mining structures like the EMET Borax Mine tailing dam, mentored by Prof. H. Sebnem Duzgun. His B.Sc. from Azad University focused on mining economics, emphasizing the developed mining economy, notably in Canada, under Dr. Babak Koohestani’s supervision. 🎓

Employment:

Dr. Pozhhan Mokhtari currently serves as a Postdoctoral Research Associate in Materials Science and Engineering at the University of Illinois Urbana-Champaign, Grainger College of Engineering. Since February 2022, he has been actively contributing to research endeavors, furthering his expertise in the field. 🧪 His role entails exploring innovative materials and techniques, aligning with his academic background and passion for sustainable solutions. Dr. Mokhtari’s appointment signifies his dedication to advancing knowledge and addressing contemporary challenges in engineering, marking another milestone in his promising career trajectory.

 

Research Focus:

Dr. Pozhhan Mokhtari’s research primarily focuses on sustainable materials and innovative solutions in construction and environmental engineering. 🌱 His work spans various areas, including the development of low-cost and eco-friendly composite binders, as evidenced by his thesis project during his Ph.D. studies. Additionally, he has contributed to studies exploring the geopolymerization mechanism of mine tailings, as well as investigating the influence of different treatments on natural fibers. Through his publications and collaborations, Dr. Mokhtari actively contributes to advancing knowledge in materials science and engineering, particularly in the context of environmentally conscious practices and infrastructure development. 🏗️

 

Publication Top Notes: