SUK-WON HWANG | Materials Science | Best Researcher Award

SUK-WON HWANG | Materials Science | Best Researcher Award

Prof SUK-WON HWANG,Korea University,South Korea
Suk-Won Hwang, an innovator in bioelectronics, is renowned for his pioneering work in biodegradable and transient electronic systems. πŸ§ͺ His research focuses on developing flexible, stretchable, and implantable devices for biomedical applications. With a prolific publication record, Hwang’s contributions include biocompatible conductive polymers, wireless nerve stimulators, and soft electronics for neuromodulation. His multidisciplinary approach integrates materials science, engineering, and medicine to create bioresorbable electronics that dissolve harmlessly in the body, opening new avenues in healthcare. Hwang’s work underscores a commitment to sustainable, eco-friendly technologies with profound implications for personalized medicine and human-machine interfaces.

Publication profile

Scopus

Education

Dr. Suk-Won Hwang is an esteemed academic with a strong foundation in materials science and engineering. He earned his Bachelor’s and Master’s degrees from Hanyang University in 2003 and 2005, respectively, where he delved into the intricacies of materials science. Building upon this knowledge, he pursued further studies at the University of Illinois at Urbana-Champaign, culminating in a Ph.D. in Materials Science and Engineering in 2013. Throughout his academic journey, Dr. Hwang has demonstrated a commitment to advancing the field through rigorous research and scholarly contributions. His educational background equips him with a comprehensive understanding of materials and their applications, positioning him as a valuable asset to both academia and industry.

 

Research focus

This person’s research focus seems to lie at the intersection of bioresorbable materials and electronic systems, with a particular emphasis on stretchable and transient electronics. They delve into various applications, such as wireless nerve stimulation, surgical meshes with monitoring capabilities and drug delivery, as well as antibacterial and radiative cooling systems. Their work also explores innovative designs inspired by nature, like electric eel-inspired electrocytes for power systems. Through their studies, they aim to develop highly efficient and sustainable solutions for soft, biodegradable electronics. πŸŒ±πŸ”¬πŸ“±

Publication top notes

Correction to: Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems (Nano-Micro Letters,

Soft, Long-Lived, Bioresorbable Electronic Surgical Mesh with Wireless Pressure Monitor and On-Demand Drug Delivery

Stretchable and biodegradable composite films for disposable, antibacterial, radiative cooling system

Electric Eel-Inspired Soft Electrocytes for Solid-State Power Systems

Materials and Designs for Extremely Efficient Encapsulation of Soft, Biodegradable Electronics

Ultra-stretchable and biodegradable elastomers for soft, transient electronics

Photothermal Lithography for Realizing a Stretchable Multilayer Electronic Circuit Using a Laser

Ashraf Morsy | Materials Science Award | Best Researcher Award

Assist Prof Dr. Ashraf Morsy | Materials Science Award | Best Researcher Award

Assist Prof Dr. Ashraf Morsy, Faculty of Engineering, Pharos University, Alexandria, Egypt.

Dr. Ashraf Morsy, a distinguished membrane technology expert πŸ§ͺ, serves as the Membrane Laboratory Supervisor at Pharos University, Egypt. With dual doctorates in Materials Science and Petrochemicals, he blends academic prowess with over two decades of laboratory experience. His research delves into water treatment, desalination, and polymer modifications, reflected in numerous publications and patents. Dr. Morsy’s leadership extends to mentoring M.Sc. and Ph.D. students, alongside active participation in international conferences. A member of prestigious scientific societies, including the Arab International of Materials Science, his work shapes sustainable solutions for water scarcity challenges. πŸŒŠπŸ”¬

 

Publication Profile

Scopus

Education

Dr. Ashraf Morsy’s academic journey spans decades of dedication and expertise πŸŽ“. Beginning with a Bachelor’s degree in Special Chemistry from Alexandria University in 1988, he continued to expand his knowledge with diplomas in Education and Material Science. His pursuit of excellence led to a Master’s degree in Materials Science in 2011 and a dual Doctorate, specializing in Materials Science and Petrochemicals. With a focus on polymer modifications and membrane fabrication for water treatment, Dr. Morsy’s extensive educational background empowers him to innovate sustainable solutions for addressing global water challenges, marking him as a leader in the field. πŸŒŠπŸ”¬

 

Experience

Dr. Ashraf Morsy brings a wealth of expertise to the realm of chemical laboratories πŸ§ͺ. Specializing in water treatment, chlorine, caustic soda production, and polymerization, his proficiency extends across various facets of chemistry. As a seasoned laboratory manager, he excels in overseeing operations and guiding the research endeavors of M.Sc. and Ph.D. students. Dr. Morsy’s adeptness isn’t confined to the lab; he is equally skilled in imparting knowledge. From organic chemistry to membrane technology, his teaching prowess encompasses a wide array of subjects, ensuring a holistic understanding of chemical processes. πŸ”¬πŸ“š

Research Focus

Dr. Ashraf Morsy’s research focus primarily revolves around sustainable solutions for water treatment and desalination, marked by his significant contributions to membrane technology 🌊. Through innovative approaches, he explores the development of advanced materials such as cellulose acetate and nanocomposites extracted from natural sources like rice straw. His work spans various facets of membrane fabrication, including polymer modifications and the integration of environmentally friendly additives for enhanced performance. Dr. Morsy’s dedication to addressing water scarcity challenges is evident in his extensive publication record, which underscores his commitment to advancing sustainable practices in the field of chemical engineering. πŸ”¬πŸ“‘

 

Publication Top NotesΒ 

  1. Utilizing a blend of expandable graphite and calcium/zinc stearate as a heat stabilizer environmentally friendly for polyvinyl chloride by Morsy et al. (2024) πŸ”„
  2. Cited by 9 articles, Improved anti-biofouling resistances using novel nanocelluloses/cellulose acetate extracted from rice straw based membranes for water desalination by Morsy et al. (2022) πŸ“š
  3. Cited by 17 articles, Evaluation of the water quality and the eutrophication risk in Mediterranean sea area: A case study of the Port Said Harbour, Egypt by Morsy et al. (2022) 🌊
  4. Cited by 2 articles, Development of cellulose acetate membrane performance by carboxylate multiwalled carbon nanotubes by Morsy et al. (2022) πŸ§ͺ
  5. Cited by 1 article, Energy Recovery from Spray Dryer Exhaust Air Using High-Temperature Heat Pump System by Morsy et al. (2022) πŸ”„
  6. Cited by 7 articles, Enhancing anti-scaling resistances of aromatic polyamide reverse osmosis membranes using a new natural materials inhibitor by Morsy et al. (2021) 🌿
  7. Cited by 18 articles, Anti-biofouling of 2-acrylamido-2-methylpropane sulfonic acid grafted cellulose acetate membranes used for water desalination by Morsy et al. (2020) πŸ”¬
  8. Cited by 2 articles, Improvement of performance and antifouling properties of reverse osmosis membranes using green additive by Morsy et al. (2019) πŸ”„
  9. Cited by 19 articles, Reverse osmosis membranes for water desalination based on cellulose acetate extracted from Egyptian rice straw by Morsy et al. (2016) 🌾
  10. Cited by 18 articles, Grafted cellulose acetate reverse osmosis membrane using 2-acrylamido-2-methylpropanesulfonic acid for water desalination by Morsy et al. (2016) πŸ”¬