Hyunho Lee | Materials Science | Best Researcher Award

Hyunho Lee | Materials Science | Best Researcher Award

Prof Hyunho Lee, Kwangwoon University, South Korea

Prof. Hyunho Lee is an Assistant Professor in the Department of Electronic Engineering at Kwangwoon University, South Korea, since March 2020. He earned his PhD in Electrical and Computer Engineering from Seoul National University in August 2018, where he also received a Distinguished Ph.D. Dissertation Award. His research focuses on light-emitting diodes, thin film solar cells, field-effect transistors, and printed flexible electronics. He has published numerous articles in esteemed journals and received multiple awards, including the GPVC 2018 Best Oral Presentation Award. Prof. Lee continues to contribute significantly to the field of electronic engineering. 🌟🔬

Publication profile

google scholar

Education and Academic Background 

Prof. Lee obtained his Ph.D. in Electrical and Computer Engineering from Seoul National University in August 2018, where he conducted significant research under the guidance of Prof. Changhee Lee. His educational background, which also includes a Bachelor’s degree from the Korea Advanced Institute of Science and Technology (KAIST), showcases a strong foundation in electrical engineering principles. This academic pedigree, combined with his active role in research and teaching as an Assistant Professor at Kwangwoon University, underscores his qualifications and commitment to advancing knowledge in his field. 

Research Experience 

With a robust research portfolio, Prof. Lee has gained extensive experience in both academic and applied settings. His postdoctoral positions at prestigious institutions like the University of Illinois Urbana Champaign and Seoul National University have enriched his expertise in materials science. His role as a research assistant has further honed his skills, providing him with a comprehensive understanding of the complexities involved in developing cutting-edge electronic materials. This blend of theoretical knowledge and practical experience makes him a well-rounded candidate for the award. 

Research Interests 

Prof. Hyunho Lee has established a remarkable research trajectory in the field of electronic engineering, focusing on innovative technologies such as light-emitting diodes (LEDs), thin-film solar cells, field-effect transistors, and printed electronics. His work with quantum dots, perovskite materials, and organic semiconductors positions him at the forefront of materials science and energy solutions, making significant contributions to the development of efficient, sustainable technologies. These areas of interest are not only critical to advancing electronic applications but also align with global efforts toward renewable energy and flexible electronics, highlighting his impact on both scientific and industrial fronts. 

Honors and Awards 

Prof. Lee’s accolades reflect his dedication and excellence in research. Notably, he received the Distinguished Ph.D. Dissertation Award for his work on the stability analysis of perovskite solar cells and light-emitting diodes. His recognition through awards such as the GPVC 2018 Best Oral Presentation Award and the KIDS Award highlights his impactful contributions to conferences and academic communities. These honors not only validate his research findings but also showcase his ability to communicate complex ideas effectively, a crucial skill for any leading researcher.

Research focus 

Prof. Hyunho Lee’s research primarily centers on advanced materials for solar cells and light-emitting diodes (LEDs), with a particular emphasis on colloidal quantum dots and perovskite structures. His work explores device structures, ion diffusion mechanisms, and degradation phenomena, aiming to enhance the efficiency and stability of photovoltaic devices. He also investigates the integration of innovative materials like Al-doped TiO₂ for electron extraction layers and the development of multifunctional transparent electrodes. Overall, his contributions significantly advance the fields of renewable energy and optoelectronics. ☀️🔋💡

Publication top notes

Towards the commercialization of colloidal quantum dot solar cells: perspectives on device structures and manufacturing

Analysis of ion‐diffusion‐induced Interface degradation in inverted perovskite solar cells via restoration of the Ag electrode

Direct Evidence of Ion-Migration-Induced Degradation of Ultrabright Perovskite Light-Emitting Diodes

Enhanced light trapping and power conversion efficiency in ultrathin plasmonic organic solar cells: a coupled optical-electrical multiphysics study on the effect of …

Current status and perspective of colored photovoltaic modules

Degradation mechanism of blue thermally activated delayed fluorescent organic light-emitting diodes under electrical stress

Universal Elaboration of Al‐Doped TiO2 as an Electron Extraction Layer in Inorganic–Organic Hybrid Perovskite and Organic Solar Cells

Conclusion 

Prof. Hyunho Lee’s extensive research interests, solid educational background, rich experience, notable honors, and impactful publications, he stands out as an exemplary candidate for the Best Researcher Award. His commitment to advancing electronic technologies not only contributes to the academic community but also holds promise for practical applications that can drive societal change. Awarding him this honor would recognize his contributions and inspire further advancements in his field. 

Keivan Shayesteh | Green Nanocomposite | Best Researcher Award

Dr. Keivan Shayesteh | Green Nanocomposite | Best Researcher Award

Dr. Keivan Shayesteh, University of Mohaghegh Ardabili, Iran

Dr. Keivan Shayesteh appears to be a strong candidate for the Research for Best Researcher Award

Publication profile

Google Scholar

Research Expertise

Dr. Shayesteh’s extensive research in chemical engineering, including mathematical modeling, simulation of processes, and applications in diverse fields like food packaging, gas industry, and water treatment, showcases a broad and impactful research portfolio.

Publications

With numerous papers published in reputable journals, such as the Chemical Engineering Science, Iranian Journal of Analytical Chemistry, and International Journal of Biological Macromolecules, Dr. Shayesteh has made significant contributions to various areas of chemical engineering and applied sciences.

Patents and Projects

His work on patents related to measuring conductivity and purification processes, along with funded research projects in areas like water quality, particle dynamics, and gas permeability, demonstrates his innovative approach and practical impact on industry and environmental challenges.

Professional Experience

Dr. Shayesteh’s long-standing role as an Associate Professor and his involvement in teaching and research further underline his commitment to advancing knowledge and mentoring future researchers.

Publication Top Notes

  • Effect of modified lignin sulfonate on controlled-release urea in soil – N Sadeghi, K Shayesteh, S Lotfiman, Journal of Polymers and the Environment 25, 792-799 (47 citations, 2017) 🌱📚
  • Studies on the respiration rate of banana fruit based on enzyme kinetics – A Heydari, K Shayesteh, N Eghbalifam, H Bordbar, S Falahatpisheh (31 citations, 2010) 🍌🔬
  • Preparation and characterization of biodegradable lignin-sulfonate nanoparticles using the microemulsion method to enhance the acetylation efficiency of lignin-sulfonate – S Moradi, K Shayesteh, G Behbudi, International Journal of Biological Macromolecules 160, 632-641 (30 citations, 2020) 🧪🔬
  • Prediction of Hydrate formation temperature for natural gas using artificial neural network – A Heydari, K Shayesteh, L Kamalzadeh, Oil and Gas Business 2, 1-10 (29 citations, 2006) 🛢️💻
  • Simultaneous removal of nickel and cadmium during the cold purification of zinc sulfate solution – K Shayesteh, P Abbasi, V Vahid Fard, M Shahedi Asl, Arabian Journal for Science and Engineering 45, 587-598 (27 citations, 2020) 🧪♻️
  • Optimized synthesis of lignin sulfonate nanoparticles by solvent shifting method and their application for adsorptive removal of dye pollutant – G Behboudi, K Shayesteh, MT Yaraki, HA Ebrahimi, S Moradi, Chemosphere 285, 131576 (26 citations, 2021) 🌈🔬
  • A New Ring Bromination Method for Aromatic Compounds under Solvent-Free Conditions with Nbs/Al2O3 – GK Imanzadeh, MR Zamanloo, H Eskandari, K Shayesteh, Journal of Chemical Research 2006 (3), 151-153 (22 citations, 2006) 🔬🧪
  • Study and optimization of parameters affecting the acetylation process of lignin sulfonate biopolymer – K Shayesteh, M Zamanloo, International Journal of Biological Macromolecules 163, 1810-1820 (21 citations, 2020) 🧪🌿
  • Mathematical modeling of absorption accompanied by a non-elementary reversible chemical reaction – H Jangara, K Shayesteh, MS Asl, Chemical Engineering Research and Design 157, 58-64 (17 citations, 2020) 📉🔬
  • Providing practical instruction for solving environmental problems from residue (cake) of cold purification process in zinc production process – K Shayesteh, P Abbasi, V Vahidfard, M HOSSEINI, Journal of Environmental Science and Technology 23 (1104001355), 53-63 (9 citations, 2021) 🌍🔬

Conclusion

Dr. Shayesteh’s research achievements, combined with his active role in both academic and industrial research, make him a suitable candidate for the Research for Best Researcher Award.