Pengcheng Guo | Engineering | Best Researcher Award

Pengcheng Guo | Engineering | Best Researcher Award

professor at  Xi’an University of Technology, China.

Professor Pengcheng Guo is a leading expert in hydraulic and river dynamics, currently serving as a professor at the School of Water Resources and Hydropower, Xi’an University of Technology. With over two decades of academic experience, he has made significant contributions to the understanding of unsteady flows in hydraulic systems, hydro-turbine dynamics, and energy utilization technologies. His research has garnered multiple national and provincial-level research grants, underlining his expertise and leadership in the field.

Publication Profile

Scopus

Education

Professor Guo holds a Doctorate in Hydraulic and River Dynamics from Xi’an University of Technology, where he also completed his Master’s and Bachelor’s degrees. His academic journey, which began in 1993, laid a strong foundation for his pioneering research in hydropower systems and water resources management.

Experience

He has held progressively senior academic positions at Xi’an University of Technology, starting as a lecturer and advancing to his current role as a professor. His work spans teaching, research leadership, and industry collaboration, with a focus on hydropower and water systems.

Research Focus

Professor Guo’s research focuses on transient flow analysis, hydraulic equipment dynamics, and the impact of unsteady flows on hydro-turbine systems. His contributions have advanced the understanding of energy dissipation, vibration analysis, and water hammer impact in hydropower systems, crucial for optimizing performance in large-scale energy facilities.

Awards and Honors 

Professor Guo has received multiple prestigious awards, including the National Science and Technology Progress Award and the Shaanxi Provincial Government’s Science and Technology Progress Award. His research has earned him recognition as a leading scholar in hydropower and clean energy utilization, further supported by his innovations in patented technologies.

Conclusion

Professor Pengcheng Guo’s consistent contributions to the fields of hydropower, fluid dynamics, and environmental engineering, combined with his successful leadership of large-scale research projects, make him a strong candidate for the Best Researcher Award. His scholarly output, award recognition, and patented innovations demonstrate the profound impact of his work in solving real-world problems, particularly in sustainable energy and water resources management. With his extensive experience and continued drive for innovation, Professor Guo exemplifies the excellence and forward-thinking research needed to foster advancements in engineering and environmental sustainability.

Publication Top Notes  

Feasibility evaluation of a wind/P2G/SOFC/GT multi-energy microgrid system with synthetic fuel based on C-H-O elemental ternary analysis
Authors: Ding, X., Guo, P., Sun, W., Lv, X., Weng, Y.
Year: 2024
Journal: Energy
Volume: 312
Article Number: 133474
Citations: 0

Dynamic behavior and energy dissipation analysis of pump turbine in unstable S characteristic zone
Authors: Guo, P., Li, Y., Sun, L.
Year: 2024
Journal: Journal of Energy Storage
Volume: 102
Article Number: 114275
Citations: 0

Leak detection in water supply pipeline with small-size leakage using deep learning networks
Authors: Guo, P., Zheng, S., Yan, J., Ma, J., Sun, S.
Year: 2024
Journal: Process Safety and Environmental Protection
Volume: 191
Pages: 2712–2724
Citations: 0

Erosion assessment and anti-erosion optimization design for Francis turbine
Authors: Sun, L., Zhang, Q., An, D., Sun, S., Guo, P.
Year: 2024
Journal: Physics of Fluids
Volume: 36(10)
Article Number: 103330
Citations: 0

Rotating speed pulling-back control and adaptive strategy of doubly-fed variable speed pumped storage unit
Authors: Gao, C., Yu, X., Nan, H., Ge, Y., Cai, Q.
Year: 2024
Journal: Renewable Energy
Volume: 232
Article Number: 121044
Citations: 0

Numerical assessment of transient flow and energy dissipation in a Pelton turbine during startup
Authors: Sun, L., Wang, Z., Zhou, H., Wang, Z., Guo, P.
Year: 2024
Journal: Physics of Fluids
Volume: 36(9)
Article Number: 094119
Citations: 0

Temporal-spatial and energy dissipation characteristics of vortex evolutions in Francis turbine during load reduction
Authors: Sun, L., Liu, L., Wang, Z., Guo, P., Xu, Z.
Year: 2024
Journal: Physics of Fluids
Volume: 36(9)
Article Number: 094112
Citations: 0

Influence of sand particle size on the erosion-corrosion resistance of Ni2FeCrMo0.2 HEA in seawater: Particle-surface-electrochemistry interaction
Authors: Wang, K., Xu, Q., Li, Y., Jia, Y., Zhou, H.
Year: 2024
Journal: Journal of Materials Research and Technology
Volume: 32
Pages: 426–438
Citations: 0

Mohamed Salah | Engineering | Best Researcher Award

Mr. Mohamed Salah | Engineering | Best Researcher Award

Structural Engineer, Css- Concrete Stressing Systems,  Egypt.

Mohamed Mostafa Salah, a structural engineering specialist, has a robust academic foundation with a BSc from Cairo University, where he graduated among the top ten, and an MSc focusing on the flexural behavior of prestressed concrete beams with GFRP and steel bars. His professional experience includes roles as a Technical Office Engineer and Site Civil Engineer at CSS Concrete Stressing Systems, where he designs and manages post-tensioned slabs and beams. With hands-on experience in supervising large-scale, high-value projects, including the Administrative Capital Residential District and 31N Tower, Mohamed’s technical and project management skills make him an excellent candidate for the Research for Best Researcher Award.

Profile :

Orcid

Education :

Mohamed completed his BSc in Structural Engineering at Cairo University with a GPA of 3.66, placing him among the top ten in his department. His MSc research focused on the flexural behavior of prestressed, bonded, post-tensioned concrete beams reinforced with GFRP and steel bars. His work, rigorously comparing experimental load capacities to international codes, underscores his analytical and experimental proficiency.

Professional Experiences :

Mohamed’s experience spans technical office engineering and site civil engineering roles. Currently, at CSS Concrete Stressing Systems, he handles post-tensioned slab and beam designs, technical proposals, and quantity surveying. His hands-on experience with project execution and consultant coordination reinforces his project management abilities. Previously, he supervised post-tensioning work as a Site Civil Engineer, showcasing his field expertise.

Research Skills :

Mohamed Mostafa Salah demonstrates advanced research skills in structural engineering, particularly in post-tensioned concrete systems. His MSc work on the flexural behavior of fully prestressed, bonded concrete beams reinforced with steel or GFRP bars highlights his ability to conduct complex experimental studies. Mohamed skillfully utilizes international standards, comparing load capacities against codes such as ACI, EURO, CSA, and ECP to ensure rigorous validation. His expertise in analyzing flexural resistance, crack patterns, and structural deflections evidences his strong analytical abilities. Additionally, his practical experience in diverse engineering projects has refined his technical precision and problem-solving skills, strengthening his research acumen.

Award And Recognition :

Mohamed Mostafa Salah has garnered recognition for his academic excellence and professional achievements in structural engineering. Graduating with distinction from Cairo University’s Faculty of Engineering, he ranked among the top ten students in his department. His groundbreaking MSc research on the flexural behavior of prestressed, bonded post-tensioned concrete beams has been praised for its practical relevance and thorough experimental analysis, aligning with international standards. Mohamed’s impactful contributions to major projects, such as the Administrative Capital Residential District and Pyramids Business Tower, further highlight his expertise. His accomplishments affirm his dedication to advancing construction engineering innovation and practice.

Conclusion :

Mohamed Mostafa Salah exemplifies the qualities of a dedicated researcher and practitioner in structural engineering. His solid academic background, significant project experience, and technical expertise in concrete stress systems and post-tensioning are strong indicators of his potential as a candidate for the Research for Best Researcher Award. His commitment to excellence and ongoing learning make him a highly suitable candidate for this accolade.

Publications Top Notes :

“Flexural Behavior of Bonded Post-Tensioned Concrete Beams with Steel or GFRP Bars”

 

Sandeep Panwar Jogi | Engineering | Best Researcher Award

Dr. Sandeep Panwar Jogi | Engineering | Best Researcher Award

Dr. Sandeep Panwar Jogi, Memorial Sloan Kettering Cancer Center, United States

Based on Dr. Sandeep Panwar Jogi’s impressive profile, he appears to be a strong candidate for the Research for Best Researcher Award.

Publication profile

Education and Experience

Dr. Jogi holds a Ph.D. in Biomedical Engineering with a focus on MRI-based assessments of knee joints. His educational background includes a B.Tech and M.Tech in Biomedical Engineering, demonstrating a solid foundation in the field. With over 10 years of experience, his career spans roles as a Research Scholar at Memorial Sloan Kettering Cancer Center, Assistant Professor at various institutions, and a Biomedical Engineer. This extensive background underscores his depth of knowledge and expertise in his field.

Research and Innovations

Dr. Jogi’s research includes developing novel MR imaging devices and AI-based algorithms. His patents and publications highlight significant contributions, such as an MR-safe loading device for knee joint assessment and AI-driven solutions for MR scanning efficiency and clinical information extraction. His work on MRI-compatible devices and AI in medical imaging demonstrates his commitment to advancing healthcare technology.

Publications 

  • Review on brain tumor detection using digital image processing – 12 citations, 2014 📊
  • Model for in-vivo estimation of stiffness of tibiofemoral joint using MR imaging and FEM analysis – 10 citations, 2021 📈
  • Device for Assessing Knee Joint Dynamics During Magnetic Resonance Imaging – 5 citations, 2021 🦵
  • A semi‐automatic framework based upon quantitative analysis of MR‐images for classification of femur cartilage into asymptomatic, early OA, and advanced‐OA groups – 3 citations, 2022 🦴
  • Modified radial-search algorithm for segmentation of tibiofemoral cartilage in MR images of patients with subchondral lesion – 3 citations, 2020 🩺
  • Explainability of Artificial Intelligence for Diagnosing COVID-19 from Chest X-Rays – 1 citation, 2021 🤖
  • Automated Segmentation of Knee Cartilage Using Modified Radial Approach for OA Patients with and without Bone Abnormality – 1 citation, 2019 📉
  • Automated seed points selection based radial-search segmentation method for sagittal and coronal view knee MRI imaging – 1 citation, 2017 🩻
  • Novel Spin-lock Time Sampling Strategies for Improved Reproducibility in Quantitative T1ρ Mapping – No citations yet, 2024 🧪
  • 4D Lung MRI with Isotropic Resolution on a 1.5T MR-Linac using a Self-Navigated 3D Radial Kooshball Acquisition and Sparse Motion Reconstruction – No citations yet, 2024 🌬️
  • Accelerated Abdominal 3D T1rho Mapping using Diamond Radial Sampling – No citations yet, 2024 📉
  • Quantitative 3D T1rho and T2 Mapping for Radiotherapy Treatment Response Monitoring in Head and Neck Cancer – No citations yet, 2024 🧠
  • Novel Sampling Schemes of Spin-locking Times to Improve Reproducibility of Quantitative 3D T1rho Mapping – No citations yet, 2024 🔍
  • Automatic Liver and Subcutaneous Fat Segmentation from MRI-PDFF Images – No citations yet, 2020 🏥
  • An approach to validate MRI Compatible axial Knee joint Loading Device with various standing posture in Standing MRI – No citations yet, 2019 🦵
  • Retrospective comparative study to assess the pitfalls of CartiGram and the complementary role of FSPD in the evaluation of cartilage lesions of the knee joint – No citations yet, 2019 🔬
  • Evaluating variability of T2 values of the cartilage, menisci and muscles around knee joint on CartiGram sequence at 1.5 T and 3.0 T MR – No citations yet, 2019 📉
  • Semi-Automatic Quantitative Analysis of Cartilage Thickness & T2 Values – No citations yet, 2018 📏
  • Quantitative MR Imaging of Articular Knee cartilage with Axial Loading during Image Acquisition – No citations yet, 2018 🦵
  • Automated Seed Points Selection Based Radial Search Segmentation Method for Sagittal and Coronal View Knee MRI Imaging – No citations yet, 2018 🖼️

Core Competencies

Dr. Jogi’s skills in medical image analysis, machine learning, and AI are well-aligned with the award’s criteria. His expertise in MRI, CT, X-ray modalities, and product development positions him as a leader in his field. His ability to interact with clinicians and develop novel imaging solutions showcases his practical and innovative approach to solving healthcare challenges.

Conclusion

Dr. Sandeep Panwar Jogi is a compelling candidate for the Research for Best Researcher Award. His blend of advanced education, extensive research experience, innovative contributions, and active involvement in the scientific community aligns well with the award’s objectives. His work not only advances medical imaging technologies but also demonstrates a profound impact on healthcare solutions.