Tingwei Zhou | Energy | Best Researcher Award

Prof. Tingwei Zhou | Energy | Best Researcher Award

Prof. Tingwei Zhou, Southwest University, China

Prof. Tingwei Zhou (周廷伟), born in February 1988, is an Associate Professor at the School of Physical Science and Technology, Southwest University, China. A member of the Communist Party, he specializes in theoretical research on material design, optoelectronic device performance, and quantum entanglement, often combining artificial intelligence with physical chemistry. With over 27 SCI papers and an H-index of 18, his work has significantly advanced the understanding of superatomic perovskites. He actively contributes to teaching, high-performance computing infrastructure, and peer-review processes for renowned journals. He is passionate about scientific exploration, education, and interdisciplinary collaboration.

Publication Profile

Scopus

🎓 Education

Prof. Zhou earned his PhD in Optical Engineering from Chongqing University (2016–2019), focusing on the frontier of superatomic materials. He obtained his MSc in Theoretical Physics from Southwest University (2013–2016), where he began his exploration of computational modeling and material theory. His undergraduate degree in Physics was completed at Zunyi Normal College (2009–2013). With a solid educational foundation in both theoretical and applied physics, his academic journey reflects a deep interest in quantum mechanics, materials science, and interdisciplinary research, forming the basis of his innovative approach to perovskite material studies and quantum phenomena. 🧪📚

🧑‍🏫 Experience

Since 2023, Prof. Zhou has served as an Associate Professor at Southwest University, where he previously held a Lecturer position (2019–2023). He has taught core subjects including computational physics, electrodynamics, and linear algebra, with experience in online, offline, and hybrid modes. Zhou has guided numerous undergraduates and postgraduates in research, thesis writing, and publishing. He also built and now manages a high-performance computing lab supporting theoretical modeling. Beyond teaching, he contributes to academic administration, graduate admissions, and collaborative research across physics and engineering disciplines. His experience showcases strong innovation, mentorship, and institutional service. 💻🧑‍🎓

🔬 Research Focus

Prof. Zhou’s research focuses on the design and performance evaluation of superatomic and perovskite materials for applications in energy, optoelectronics, and catalysis. He explores properties like crystal structure, adsorption energy, charge density, and activation energy using first-principles simulations. His interests extend to quantum entanglement theory and integrating artificial intelligence into physical chemistry. He also pioneers theoretical frameworks linking category theory to quantum physics. His published work in top-tier journals highlights advances in device efficiency, defect engineering, and stability mechanisms in functional materials. His cross-disciplinary approach pushes the boundaries of theoretical materials science and quantum innovation. ⚛️🧠💡

Publication Top Notes

📘 Coherence Programming for Efficient Linearly Polarized Perovskite Light-Emitting Diodes – Xiao, M.; Yang, J.; Zhang, W.; Wang, J.; Chen, P. – ACS Nano, 2024 – 📈 Cited by: 1

🌞 Facile Surface Regulation for Highly Efficient and Thermally Stable Perovskite Solar Cells via Chlormequat Chloride – Yang, B.; Lin, P.; Zhou, T.; Cai, B.; Zhang, W. – Chinese Chemical Letters, 2024

🌿 Facile and Sustainable Interface Modulation via a Self-Assembly Phosphonate Molecule for Efficient and Stable Perovskite Photovoltaics – Yang, B.; Cai, B.; Zhou, T.; Zheng, X.; Zhang, W. – Chemical Engineering Journal, 2024 – 🔟 Cited by: 10

🔬 A Construction Method of the Wave–Particle Entanglement State of the Particle System – Zhou, T. – Modern Physics Letters B, 2024

Kumar Mallem | Energy | Best Researcher Award

Dr. Kumar Mallem | Energy | Best Researcher Award

Dr. Kumar Mallem, Hong Kong University of Science and Technology, Hong Kong

Dr. Kumar Mallem is a researcher in electronic and computer engineering, specializing in quantum rod light-emitting diodes (QRLEDs) and advanced optoelectronic materials. He is pursuing a Ph.D. at the Hong Kong University of Science and Technology (HKUST), focusing on next-generation display and lighting applications. His research spans quantum dot and quantum rod LEDs, perovskite solar cells, and silicon-based photovoltaics. Dr. Mallem has extensive experience in device fabrication and characterization, with multiple high-impact publications and patents. Recognized with prestigious awards, including the Distinguished Paper Award at SID Display Week 2025, he continues to advance energy-efficient lighting technologies.

Publication Profile

Google Scholar

Education 🎓

Dr. Kumar Mallem is currently pursuing a Ph.D. in Electronic and Computer Engineering at HKUST (2020–2025) under Prof. Abhishek Kumar Srivastava, focusing on quantum rod light-emitting diodes for future display applications. He earned an M.Tech. in Electronics and Communication Engineering from Jawaharlal Nehru Technological University, Kakinada (2012–2014), conducting research on HfO₂/Ge stacks for MOS devices at IIT Bombay under Prof. Saurabh Lodha. His B.Tech. in the same field was completed at AGCIT, JNTU Kakinada (2007–2011). His educational background integrates semiconductor device engineering, optoelectronics, and materials science, equipping him with expertise in advanced display and photovoltaic technologies.

Experience 🏆

Dr. Kumar Mallem has significant research experience in optoelectronics and semiconductor devices. Since 2020, he has been a Ph.D. researcher at HKUST, developing quantum rod LEDs and optimizing their efficiency. From 2015 to 2019, he worked as a research assistant at Sungkyunkwan University, South Korea, under Prof. Junsin Yi, specializing in silicon solar cells, thin-film transistors (TFTs), and MOS devices. His hands-on expertise includes device fabrication, nanomaterials assembly, and advanced characterization techniques. His work contributes to energy-efficient display technologies and next-generation solid-state lighting.

Awards & Honors 🏅

Dr. Kumar Mallem has received several prestigious recognitions, including the Distinguished Paper Award at SID Display Week 2025 for his work on highly efficient QRLEDs. He was awarded the Hong Kong PhD Fellowship Scheme (2020–2025) for academic excellence. He also won the Excellent Paper Award at the Asia-Pacific Forum on Renewable Energy in 2018. His contributions to optoelectronic devices and energy-efficient lighting technologies have earned him international recognition, reflecting his impact in advancing quantum dot and nanomaterial-based displays.

Research Focus 🔬

Dr. Kumar Mallem specializes in quantum rod and quantum dot light-emitting diodes, perovskite LEDs, silicon solar cells, and advanced optoelectronic materials. His research aims to enhance device efficiency, suppress charge leakage, and improve external quantum efficiency for high-performance display and lighting technologies. He works extensively with solution-processed nanomaterials, carrier injection engineering, and interface optimization to develop next-generation optoelectronic devices. His contributions to solid-state lighting and energy-efficient display technologies push the boundaries of modern photonic applications.

Publication Top Notes

  • Quantum‐Rod On‐Chip LEDs for Display Backlights with Efficacy of 149 lm W−1 |  Advanced Materials | 55 | 2021
  • Molybdenum oxide: A superior hole extraction layer for Si solar cells | Materials Research Bulletin | 53 | 2019
  • Influence of small size pyramid texturing on Ag-screen printed Si solar cells | Materials Science in Semiconductor Processing | 45 | 2018
  • Control of size and distribution of silicon quantum dots for solar cells | Renewable Energy | 33 | 2019
  • Ultralow roll‐off quantum dot LEDs using engineered carrier injection layer | Advanced Materials | 30 | 2023
  • Ambient annealing influence on MoOx layer for carrier-selective contact solar cells | Materials Science in Semiconductor Processing | 29 | 2019
  • MoOx work function & interface analysis for hole-selective Si heterojunction solar cells | Applied Surface Science | 24 | 2021
  • Solution-processed red, green, and blue quantum rod LEDs | ACS Applied Materials & Interfaces | 22 | 2022
  • High-efficiency crystalline silicon solar cells: A review  | 19 | 2019
  • Light scattering properties of multi-textured AZO films for Si thin film solar cells |  Applied Surface Science | 19 | 2018

Shaohong Wang | Energy | Best Researcher Award

Shaohong Wang | Energy | Best Researcher Award

Dr Shaohong Wang, Harbin Institute of Technology, China

Dr. Shaohong Wang’s research background and achievements make him a highly suitable candidate for the Best Researcher Award. Below is a breakdown of his qualifications, accomplishments, and contributions in recent years.

Publication profile

Scopus

Research Interests

Dr. Wang’s primary research focuses on environmental functional materials, CO2 reduction, and hydrogen recovery. He has also worked on the transformation of catalytic wet oxidation systems, which are crucial for advancing sustainability in environmental technologies.

Education Background

Dr. Wang holds a Ph.D. in Environmental Science and Technology from Xiangtan University, under the supervision of Prof. Yin Xu. He completed his B.S.E. in Environmental Engineering from Hunan City University and is currently a postdoctoral researcher at Harbin Institute of Technology.

Research Achievements

  1. Publications: Dr. Wang has made significant contributions to high-impact journals like Environmental Science & Technology and Water Research, with notable works on the degradation of organic pollutants, such as nitrobenzene and ciprofloxacin. His research has received extensive citations (e.g., 57 citations for his 2022 publication on oxygen vacancy-mediated catalysts).
  2. Patents: He holds patents related to innovative methods for treating wastewater, showcasing his practical application of research in environmental engineering.
  3. Funded Projects: Dr. Wang has secured prestigious funding from national and state laboratories, focusing on low-voltage electrocatalytic systems and antibiotic degradation.

Awards and Honors

Dr. Wang has been recognized with multiple awards, including the 2023 PhD National Scholarship, Principal’s Special Scholarship, and Best Oral Report at academic conferences.

Conclusion

Dr. Shaohong Wang’s substantial contributions to environmental science, coupled with his numerous recognitions, make him an exceptional candidate for the Best Researcher Award. His innovative work in sustainable technologies holds promising potential for future advancements in the field.

Publication top notes

Boosting Efficient Alkaline Hydrogen Evolution Reaction of CoFe-Layered Double Hydroxides Nanosheets via Co-Coordination Mechanism of W-Doping and Oxygen Defect Engineering

Regulating the concentration of dissolved oxygen to achieve the directional transformation of reactive oxygen species: A controllable oxidation process for ciprofloxacin degradation by calcined CuCoFe-LDH

Oxygen Vacancy-Mediated CuCoFe/Tartrate-LDH Catalyst Directly Activates Oxygen to Produce Superoxide Radicals: Transformation of Active Species and Implication for Nitrobenzene Degradation

Lattice-distortion active sites of Ni-doped CuMgFe LDH for benzotraizole degradation

 

 

Hadi Belhaj | Energy | Best Faculty Award

Hadi Belhaj | Energy | Best Faculty Award

Prof Hadi Belhaj, Khalifa University, United Arab Emirates

Based on the provided information, Prof. Hadi Belhaj appears to be a highly suitable candidate for the Research for Best Faculty Award.

Publication profile

google scholar

  1. Educational Background: Prof. Belhaj holds a Ph.D. in Petroleum Engineering from Dalhousie University, which establishes his strong academic foundation in the field.
  2. Extensive Research Experience: His involvement in numerous funded research projects, including studies on enhanced oil recovery (EOR), CO2 sequestration, and unconventional reservoir engineering, demonstrates his active contribution to advancing petroleum engineering knowledge.
  3. Leadership in Research Projects: Prof. Belhaj has served as the principal investigator on several significant projects, with budgets reaching into the millions of dollars, indicating his ability to lead large-scale research initiatives successfully.
  4. Publications and Contributions: He has authored numerous journal papers and a book on tight oil reservoirs, showcasing his expertise and contributions to academic literature.
  5. Recognition and Awards: Prof. Belhaj has received several prestigious awards, including the SPE International Distinguished Service Award and the SPE Regional Distinguished Achievement for Petroleum Engineering Faculty Award, which recognize his excellence in research and service.
  6. Professional Service and Memberships: His active participation in professional societies like the Society of Petroleum Engineers (SPE) and his role in various committees underline his commitment to the broader engineering community.
  7. Teaching and Mentorship: His roles in mentoring students, advising SPE student chapters, and organizing training programs demonstrate his dedication to education and fostering the next generation of petroleum engineers.

Given these accomplishments and his significant impact on both research and education in petroleum engineering, Prof. Hadi Belhaj is indeed a strong contender for the Research for Best Faculty Award.

Publication top notes

Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-A comprehensive review

Ionic liquids as alternatives of surfactants in enhanced oil recovery—A state-of-the-art review

Experimental investigation, binary modelling and artificial neural network prediction of surfactant adsorption for enhanced oil recovery application

Sand-production prediction: a new set of criteria for modeling based on large-scale transient experiments and numerical investigation

Comprehensive transient modeling of sand production in horizontal wellbores

Rock properties evaluation for carbonate reservoir characterization with multi-scale digital rock images

Enhanced oil recovery by nonionic surfactants considering micellization, surface, and foaming properties

 

Minseok Ryu | Energy | Best Researcher Award

Minseok Ryu | Energy | Best Researcher Award

Assist Prof Dr Minseok Ryu, Arizona State University, United States

Dr. Minseok Ryu is an Assistant Professor in the School of Computing and Augmented Intelligence at Arizona State University, Tempe, AZ. He holds a Ph.D. in Industrial and Operations Engineering from the University of Michigan and an M.S. and B.S. in Aerospace Engineering from KAIST. Dr. Ryu’s research spans advanced scientific computing, privacy-preserving federated learning, and power system resilience. He has held notable positions at Argonne and Los Alamos National Laboratories and has been recognized by the Department of Energy for his highlighted research. He is a member of prominent societies like INFORMS and IEEE. 🌟🧑‍🏫🔬

Publication profile

google scholar

Education 

Her hold a Ph.D. in Industrial and Operations Engineering from the University of Michigan, Ann Arbor, completed in May 2020 🎓. Prior to this, I earned a Master’s degree in Aerospace Engineering from KAIST in Daejeon, Korea, in February 2014 🚀. My academic journey began with a Bachelor’s degree in the same field at KAIST, which I completed in February 2012 ✈️. This extensive background has equipped me with a robust understanding of both industrial systems and aerospace technologies, paving the way for a dynamic and interdisciplinary career 🛠️🌍.

Honors & Awards

In 2024, I had the honor of being an Alliance Fellow with the Mayo Clinic and ASU Alliance for Health Care during their esteemed Faculty Summer Residency program. My research has consistently been recognized, including being highlighted by the Department of Energy’s Advanced Scientific Computing Research in both 2023 and 2022 🌟. My academic journey has been supported by several prestigious awards, such as the Rackham Graduate Student Research Grant from the University of Michigan in 2016 🎓 and multiple fellowships in 2015. Additionally, my early academic achievements include the National Science Foundation Student Award 🏆 and recognition from the Government of Korea for outstanding scholarship 🌍.

Employment 💼

He is currently an Assistant Professor at Arizona State University (since August 2023), after a tenure as a Postdoctoral Appointee at Argonne National Laboratory from 2020 to 2023.

Research focus

M. Ryu’s research spans privacy-preserving federated learning frameworks, including differential privacy and distributed control of optimal power flow in electric grids. They also contribute to distributionally robust optimization techniques for scheduling and staffing problems, particularly in healthcare and power systems. Their work emphasizes practical algorithms and frameworks (like APPFL) for enhancing privacy and efficiency in distributed systems. Additionally, they explore mitigating uncertain impacts of geomagnetic disturbances on electric grids. Overall, M. Ryu’s research integrates optimization, privacy, and robustness into practical applications across diverse domains. 📊🔒

Publication top notes

Data-Driven Distributionally Robust Appointment Scheduling over Wasserstein Balls

APPFL: Open-Source Software Framework for Privacy-Preserving Federated Learning

A Privacy-Preserving Distributed Control of Optimal Power Flow

An extended formulation of the convex recoloring problem on a tree

Nurse Staffing under Absenteeism: A Distributionally Robust Optimization Approach

Differentially private federated learning via inexact ADMM with multiple local updates

Mitigating the Impacts of Uncertain Geomagnetic Disturbances on Electric Grids: A Distributionally Robust Optimization Approach

Algorithms for Mitigating the Effect of Uncertain Geomagnetic Disturbances in Electric Grids

Development of an Engineering Education Framework for Aerodynamic Shape Optimization

Enabling End-to-End Secure Federated Learning in Biomedical Research on Heterogeneous Computing Environments with APPFLx