SUNG GYU PYO | Materials Science | Best Researcher Award

SUNG GYU PYO | Materials Science | Best Researcher Award

Prof SUNG GYU PYO, Chung-Ang University, South Korea

Based on the detailed profile of Prof. Sung Gyu Pyo, he appears highly suitable for the “Best Researcher Award.

Publication profile

google scholar

Research Interests

Nano Microstructural Control: Prof. Pyo’s expertise in the nano microstructural control and evolution in various materials demonstrates his innovative approach in advanced materials science. Semiconductor Materials: His work in semiconductor materials and processing, including process integration and interconnect technology, is at the forefront of technological advancements in electronics. Advanced Technologies: Prof. Pyo’s involvement in cutting-edge technologies like Atomic Force Microscopy (AFM), HBM 3D integration, MEMS/sensors, and packaging processes highlights his comprehensive understanding and contributions to modern engineering.

Education and Professional Experience

Educational Background: With a robust educational foundation, including post-doctoral work at prestigious institutions like MIT and Kyoto University, Prof. Pyo is well-equipped with advanced knowledge and research skills. Teaching and Leadership: His roles as a Professor and former Dean at Chung-Ang University, along with his exchange professorship at the University of Texas, Austin, underline his leadership in academia and his commitment to education. Industry Contributions: Prof. Pyo’s extensive experience in the semiconductor industry, including leadership positions at SK Hynix and MagnaChip Semiconductor, showcases his ability to bridge the gap between academic research and industrial application.

Achievements

Publications and Patents: With approximately 100 publications and 200 patents, Prof. Pyo has made significant contributions to scientific literature and technological innovation. His work has been widely cited, reflecting the impact and relevance of his research. Editorial Roles: Serving on editorial boards of journals like Electronic Materials Letter and Advanced Science, Engineering and Medicine, he has contributed to shaping the field’s research directions.

Selected Publications

Optimizing Nanocomposite Structures: His publication on enhancing charge storage in nanocomposites is a testament to his innovative research in energy materials. Manufacturing Techniques: Several of his patents and publications focus on advanced manufacturing techniques for semiconductor devices, indicating his practical contributions to improving technology.

Recognition and Memberships

Who’s Who Listings: Prof. Pyo’s inclusion in Who’s Who in the World highlights his global recognition as a leading researcher. Professional Memberships: His involvement with the Korea Research Council for Industrial Science and Technology and the System IC Foundry Research Group reflects his influence in advancing industrial science.

Conclusion

Prof. Sung Gyu Pyo’s extensive research in materials science, significant contributions to semiconductor technology, and influential roles in academia and industry make him a strong candidate for the “Best Researcher Award.” His innovative work and leadership have not only advanced scientific understanding but have also driven technological progress, making him highly deserving of this recognition.

Research focus

Dr. SG Pyo’s research primarily focuses on semiconductor devices, specifically in the development and enhancement of image sensors and metal wiring. His notable contributions include advancements in backside illuminated sensors, fabrication of electrocatalysts for water splitting, and innovations in photoelectrodes for perovskite solar cells. His work spans across multiple areas including materials science, nanotechnology, and surface science, making significant strides in both theoretical and applied aspects of semiconductor technology. Dr. Pyo’s research has been published in high-impact journals and patented, showcasing his expertise in enhancing device performance and efficiency.

🔬📸🌟🧪✨🔋

Publication top notes

Atomic layer etching applications in nano-semiconductor device fabrication

Heater block having catalyst spray means

Zn2SnO4-Based Photoelectrodes for Organolead Halide Perovskite Solar Cells

Method of forming a metal wiring in a semiconductor device

Backside illuminated image sensor

Fabrication and evaluation of nickel cobalt alloy electrocatalysts for alkaline water splitting

Development of a production-ready, back-illuminated CMOS image sensor with small pixels

Microstructural analysis of multilayered titanium aluminide sheets fabricated by hot rolling and heat treatment

Enhanced charge storage by optimization of pore structure in nanocomposite between ordered mesoporous carbon and nanosized WO3− x

Fabrication of multilayered titanium aluminide sheets by self-propagating high-temperature synthesis reaction using hot rolling and heat treatment

Wenyao Zhang | Materials Science | Young Scientist Award

Dr Wenyao Zhang |  Materials Science |  Young Scientist Award

professor at  Nanjing university of science and technology, China

Dr. Wenyao Zhang is a distinguished professor at the School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology in Nanjing, China. He currently leads research in the field of aqueous Zn-ion batteries, focusing on the surface chemistry of Zn metal and the stabilization of metal clusters.

Publication profile

Google Scholar

Educational Background:

  • Ph.D. in Materials Science & Engineering (2012 – 2017): Nanjing University of Science and Technology, China.
  • Joint Ph.D. in Colloid Chemistry (2015 – 2017): Max Planck Institute of Colloids and Interfaces, Germany.
  • B.Eng. in Materials Chemistry (2008 – 2012): Nanjing University of Science and Technology, China.

Dr. Zhang’s research contributions have significantly advanced the understanding and application of nanomaterials in energy storage and conversion technologies.

Professional Experience:

  • 2022 – Present: Professor, Overseas High-Level Talent Recruitment Programs, Nanjing University of Science & Technology.
    • Research: Zn metal surface chemistry, aqueous Zn-ion batteries, stabilization of atomic/subnanometric metal clusters.
  • 2020 – 2022: Postdoctoral Researcher, Chemical & Materials Engineering, University of Alberta, Canada.
    • Co-Advisors: Prof. Ken Cadien, Prof. Zhi Li.
  • 2017 – 2020: Postdoctoral Researcher, Waterloo Institute for Nanotechnology, University of Waterloo, Canada.
    • Co-Advisors: Prof. Zhongwei Chen, Prof. Aiping Yu.

Academic Background:

Dr. Zhang earned his Ph.D. in Materials Science and Engineering from Nanjing University of Science and Technology in 2017, under the supervision of Prof. Xin Wang. He conducted joint Ph.D. research in Colloid Chemistry at the Max Planck Institute of Colloids and Interfaces in Germany, under Prof. Markus Antonietti. His research during this period focused on carbon-nitrogen materials for electrocatalysis and lithium-ion batteries, and carbon nitride-based materials for photoelectrochemical water splitting.

Materials Science Research Focus:

Dr. Wenyao Zhang’s research in materials science primarily revolves around energy storage and conversion technologies, with a significant emphasis on the following areas:

  1. Aqueous Zn-ion Batteries:
    • Zn Metal Surface Chemistry: Investigating the chemical interactions and surface modifications of zinc metal to enhance the performance and stability of aqueous Zn-ion batteries.
    • Stabilization of Metal Clusters: Developing molecular trapping strategies to stabilize atomic and subnanometric metal clusters, which are crucial for improving the efficiency and longevity of battery systems.
  2. Electrocatalysis:
    • Carbon-Nitrogen Materials: Designing novel carbon-nitrogen materials to serve as supports for electrocatalysts, enhancing their activity and durability for various electrochemical reactions.
  3. Photoelectrochemical Water Splitting:
    • Carbon Nitride-Based Materials: Creating high-performance carbon nitride-based materials to act as catalysts for photoelectrochemical water splitting, aiming to generate hydrogen efficiently using solar energy.
  4. Nanostructured Materials:
    • Growth of MnO2 on Carbon Nanotubes: Controlled synthesis of nanostructured manganese dioxide on carbon nanotubes to develop high-performance electrochemical capacitors.

Dr. Zhang’s innovative research integrates advanced material design and synthesis techniques to address critical challenges in energy storage and conversion, contributing to the development of sustainable and efficient energy solutions.

Citations:

  • Total Citations: 1,645
  • Citations Since 2019: 1,437
  • h-index: 21
  • i10-index: 28

Publication Top Notes

  • Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance
    • P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu, X. Wang, Journal of Power Sources, 266, 384-392, 2014
    • Citations: 183
  • Palladium nanoparticles supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation
    • W. Zhang, H. Huang, F. Li, K. Deng, X. Wang, Journal of Materials Chemistry A, 2 (44), 19084-19094, 2014
    • Citations: 169
  • Defect‐Enriched Nitrogen Doped–Graphene Quantum Dots Engineered NiCo2S4 Nanoarray as High‐Efficiency Bifunctional Catalyst for Flexible Zn‐Air Battery
    • W. Liu, B. Ren, W. Zhang, M. Zhang, G. Li, M. Xiao, J. Zhu, A. Yu, Small, 15 (44), 1903610, 2019
    • Citations: 99
  • Merging single‐atom‐dispersed iron and graphitic carbon nitride to a joint electronic system for high‐efficiency photocatalytic hydrogen evolution
    • W. Zhang, Q. Peng, L. Shi, Q. Yao, X. Wang, A. Yu, Z. Chen, Y. Fu, Small, 15 (50), 1905166, 2019
    • Citations: 90
  • Zn-free MOFs like MIL-53 (Al) and MIL-125 (Ti) for the preparation of defect-rich, ultrafine ZnO nanosheets with high photocatalytic performance
    • H. Xiao, W. Zhang, Q. Yao, L. Huang, L. Chen, B. Boury, Z. Chen, Applied Catalysis B: Environmental, 244, 719-731, 2019
    • Citations: 90
  • Controlled growth of nanostructured MnO2 on carbon nanotubes for high-performance electrochemical capacitors
    • H. Huang, W. Zhang, Y. Fu, X. Wang, Electrochimica Acta, 152, 480-488, 2015
    • Citations: 87
  • Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries
    • W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan, S. Zhai, R. Feng, N. Chen, Nature Communications, 13 (1), 5348, 2022
    • Citations: 84
  • A general approach for fabricating 3D MFe2O4 (M= Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes
    • W. Zhang, Y. Fu, W. Liu, L. Lim, X. Wang, A. Yu, Nano Energy, 57, 48-56, 2019
    • Citations: 82
  • A “trimurti” heterostructured hybrid with an intimate CoO/Co x P interface as a robust bifunctional air electrode for rechargeable Zn–air batteries
    • Y. Niu, M. Xiao, J. Zhu, T. Zeng, J. Li, W. Zhang, D. Su, A. Yu, Z. Chen, Journal of Materials Chemistry A, 8 (18), 9177-9184, 2020
    • Citations: 81
  • One-pot synthesis of nickel-modified carbon nitride layers toward efficient photoelectrochemical cells
    • W. Zhang, J. Albero, L. Xi, K. M. Lange, H. Garcia, X. Wang, M. Shalom, ACS Applied Materials & Interfaces, 9 (38), 32667-32677, 2017
    • Citations: 67