Naglaa Roushdy Mohamed Ahamed | Materials science | Women Researcher Award

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed | Materials science | Women Researcher Award

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed, Electronics Materials Dep. Advanced Technology& New Materials Research Inst., City of Scientific Research & Technological Applications (SRTACity),, Egypt

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed is a skilled physicist with a Ph.D. in Physics from Alexandria University (2014). Her research interests include thin film preparation, nanotechnology applications, solar cell technology, and superconductivity. With expertise in electrical, optical, and thermal characterization, she has contributed to advanced material science. Dr. Naglaa has worked as a researcher assistant in superconductivity and inter-metallic glasses at Alexandria University, focusing on thin film techniques like sputtering and dip coating. She holds multiple certifications, including in computer driving and English language proficiency. πŸŒŸπŸ”¬πŸ’»πŸ”‹πŸ‘©β€πŸ”¬

 

Publication Profile

Google Scholar

Academic Background and Certifications

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed holds a Ph.D. in Physics (2014) from Alexandria University, Egypt, where she also earned her M.Sc. (2007) and B.Sc. (2004) in Physics. She has obtained several certifications, including an excellent Local Computer Driving License from the Arab Academy for Science and Technology (2006) and the International Computer Driving License (ICDL) in 2010. Additionally, she earned a Certification in English Language from Alexandria University’s Faculty of Arts in 2013. Dr. Naglaa’s academic credentials highlight her dedication to continuous learning and excellence. πŸŽ“πŸ’»πŸ“šπŸ–₯️🌟

Professional Experience

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed has extensive professional experience in the field of physics. From 2005 to 2007, she worked as a researcher assistant in the superconductivity and inter-metallic glasses lab at Alexandria University. She contributed to the preparation of superconductivity bulk samples and participated in new research in the lab. Between 2007 and 2009, Dr. Naglaa focused on characterizing samples using XRD tools and analyzing the data. Additionally, she gained hands-on experience in thin film preparation using various techniques such as SILAR, dip coating, and sputtering. πŸ”¬πŸ§ͺβš‘πŸ“ŠπŸ§‘β€πŸ”¬

Research Interests

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed’s research spans a range of cutting-edge topics in physics and material science. Her primary areas of interest include thin film preparation and application for advanced materials, along with electrical, optical, and thermal characterization of materials. She also explores solar cell technology to advance renewable energy solutions, delves into the applications of nanotechnology, and investigates the properties of superconductivity for innovative energy solutions. Her work contributes significantly to the development of materials for sustainable technology. πŸ”¬βš‘πŸŒžπŸ§ͺπŸ”‹

 

Publication Top Notes

  • Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique – Cited by: 204 πŸ“š | Year: 2008
  • Structural and optical characteristics of nano-sized structure of Zn0.5Cd0.5S thin films prepared by dip-coating method – Cited by: 96 πŸ“š | Year: 2009
  • Design, fabrication and optical characterizations of pyrimidine fused quinolone carboxylate moiety for photodiode applications – Cited by: 42 πŸ“š | Year: 2020
  • Influence of Cd-content on structural and optical dispersion characteristics of nanocrystalline Zn1βˆ’ xCdxS (0β©½ xβ©½ 0.9) films – Cited by: 37 πŸ“š | Year: 2015
  • Controlling the crystallite size and influence of the film thickness on the optical and electrical characteristics of nanocrystalline Cu2S films – Cited by: 37 πŸ“š | Year: 2012
  • Optical sensing performance characteristics of Schottky devices diodes based nano-particle disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl) azo]-2-naphthalenesulfonate – Cited by: 34 πŸ“š | Year: 2018
  • Synthesis, molecular, electronic structure, linear and non-linear optical and phototransient properties of 8-methyl-1, 2-dihydro-4H-chromeno [2, 3-b] quinoline-4, 6 (3H)-dione – Cited by: 34 πŸ“š | Year: 2018
  • Study of optical properties of nanostructured PbS films – Cited by: 33 πŸ“š | Year: 2010
  • Synthesis, spectroscopic, DFT and optoelectronic studies of 2-benzylidene-3-hydroxy -1-(5,6-diphenyl-1,2,4-triazine-3-yl)hydrazine metal complexes – Cited by: 28 πŸ“š | Year: 2017
  • Exploring the molecular spectroscopic and electronic characterization of nanocrystalline Metal-free phthalocyanine: a DFT investigation – Cited by: 27 πŸ“š | Year: 2023
  • Synthesis, DFT study and photoelectrical characterizations of the novel 4-methoxyfuro [3, 2: 6, 7] chromeno [2, 3-e] benzo [b][1, 4] diazepin-5 (12H)-one – Cited by: 24 πŸ“š | Year: 2018
  • Synthesis, DFT band structure calculations, optical and photoelectrical characterizations of the novel 5-hydroxy-4-methoxy-7-oxo-7H-furo [3, 2-g] chromene-6-carbonitrile (HMOFCC) – Cited by: 22 πŸ“š | Year: 2017
  • Synthesis and photosensitivity characterizations of 9-(6-bromo-4-oxo-4H-chromen-3-yl)-3, 4, 6, 7-tetrahydro-3, 3, 6, 6-tetramethyl-2H-xanthene-1, 8-(5H, 9H)-dione (BOCTTX) – Cited by: 22 πŸ“š | Year: 2016
  • Facile synthesis and photodetection characteristics of novel nanostructured triazinyliminomethylpyrano [3, 2-c] quinoline-based hybrid heterojunction – Cited by: 19 πŸ“š | Year: 2020
  • Synthesis, spectral characterization, DFT and photosensitivity studies of 1-{[(4-methoxy-5-oxo-5H-furo [3, 2-g] chromen-6-yl) methylidene] amino}-4, 6-dimethyl-2-oxo-1, 2 – Cited by: 18 πŸ“š | Year: 2019

 

 

 

Shengqiu Zhao | Materials Science | Best Scholar Award

Dr. Shengqiu Zhao | Materials Science | Best Scholar Award

Dr. Shengqiu Zhao, Foshan Xianhu Laboratory, China

Dr. Shengqiu Zhao πŸŽ“ (Born: 24 February 1997) is a researcher in Materials Science and Engineering at Wuhan University of Technology. He earned his Ph.D. (2018-2024) and B.Sc. in Polymer Materials and Engineering (2014-2018) from the university. His research focuses on hydrogen-electricity conversion technology, developing efficient and stable polymer electrolytes and hydrogen separation methods. Dr. Zhao has contributed to groundbreaking work in proton exchange membranes, including industrial-scale applications in fuel cells and hydrogen production. He has authored multiple high-impact papers πŸ“š, filed several patents πŸ’‘, and received prestigious awards πŸ…, including the Outstanding Ph.D. Graduate Award.

 

Academic Career πŸŽ“

Dr. Shengqiu Zhao pursued his academic journey in Materials Science and Engineering, beginning with a B.Sc. in Polymer Materials and Engineering from Hunan University of Technology (2014-2018). His dedication led him to Wuhan University of Technology, where he enrolled in a combined Master’s and Ph.D. program in Materials Science and Engineering (2018-2024). Throughout his academic career, Dr. Zhao focused on innovative research in hydrogen-electricity conversion technology and polymer electrolytes, contributing significantly to advancements in fuel cell systems and hydrogen production. His work has earned him recognition in the academic community πŸ“šπŸ….

 

Academic Background & Contributions πŸ”¬βš‘

Since 2018, Dr. Shengqiu Zhao has focused on overcoming challenges in hydrogen-electricity conversion technology. His research includes designing efficient and stable polymer electrolytes, investigating ion conduction mechanisms, and optimizing membrane interfaces. Key contributions include the cost-effective synthesis of novel polymer electrolytes, which reduces production costs and variability, as well as the development of an efficient electrochemical hydrogen separation method. Additionally, Dr. Zhao has designed high-performance, durable Membrane Electrode Assemblies (MEA) for hydrogen-electricity conversion, enhancing chemical durability and membrane performance. His innovative work supports advancements in clean energy technologies πŸŒ±πŸ”‹.

 

Research Projects πŸ§ͺπŸ”‹

Dr. Shengqiu Zhao has contributed to groundbreaking research in hydrogen energy technologies. From June 2019 to November 2021, he was a key member in developing composite proton exchange membrane engineering technology. This project resulted in high-performance ePTFE-enhanced membranes, leading to China’s first fully indigenous production line for perfluorosulfonic acid proton exchange membranes, with a stable annual capacity of 300,000 mΒ². These membranes have powered hydrogen fuel cell buses, demonstrated at the 2022 Beijing Winter Olympics. Additionally, from March 2022 to September 2023, he contributed to developing melt-extruded multilayer composite membranes for water electrolysis, advancing China’s megawatt-scale hydrogen production unit βš‘πŸš€.

 

Honors & Awards πŸ†πŸŽ“

Dr. Shengqiu Zhao has earned numerous prestigious accolades throughout his academic journey. From 2018 to 2024, he was recognized as an Outstanding Ph.D. Graduate and awarded a First-Class Scholarship by Wuhan University of Technology for his exceptional research and academic performance. Earlier, during his undergraduate studies at Hunan University of Technology (2014-2018), he received the Outstanding Undergraduate Graduate of Hunan Province honor and was a recipient of the National Endeavor Scholarship for three consecutive years. These awards highlight his dedication and excellence in the field of materials science and engineering πŸŽ–οΈπŸŽ“.

 

Research Focus πŸ”¬βš‘

Dr. Shengqiu Zhao’s research primarily revolves around advancing hydrogen-electricity conversion technologies with a focus on proton exchange membranes (PEMs) for fuel cells and water electrolysis. His work includes the development of durable, high-performance PEMs with enhanced proton conductivity and resistance to degradation. He explores composite membrane engineering, ion-conducting channels, and electrocatalysts to improve fuel cell efficiency. Additionally, Zhao investigates hydrogen separation methods, polymer electrolytes, and material design for sustainable energy systems, aiming to reduce costs, enhance performance, and promote the large-scale application of these technologies in clean energy solutions πŸŒ±πŸ”‹.

 

Publication Top NotesΒ πŸ“š

  • Self-Assembly-Cooperating in Situ Construction of MXene–CeO2 as Hybrid Membrane Coating for Durable and High-Performance Proton Exchange MembraneCited by 53, Year 2022 πŸ“ƒπŸ”¬
  • Proton-conductive channels engineering of perfluorosulfonic acid membrane via in situ acid–base pair of metal organic framework for fuel cellsCited by 31, Year 2023 ⚑πŸ§ͺ
  • Perfluorosulfonic acid proton exchange membrane with double proton site side chain for high-performance fuel cells at low humidityCited by 24, Year 2023 πŸ”‹πŸŒ¬οΈ
  • Recent advances regarding precious metal-based electrocatalysts for acidic water splittingCited by 24, Year 2022 πŸ’§βš‘
  • Construction of reliable ion-conducting channels based on the perfluorinated anion-exchange membrane for high-performance pure-water-fed electrolysisCited by 16, Year 2023 πŸ’§πŸ”‹
  • Polyphenol synergistic cerium oxide surface engineering constructed core-shell nanostructures as antioxidants for durable and high-performance proton exchange membrane fuel cellsCited by 15, Year 2023 βš™οΈπŸŒ±
  • Hydrophilic channel volume behavior on proton transport performance of proton exchange membrane in fuel cellsCited by 15, Year 2022 πŸ’‘πŸ’§
  • Construction of catalyst layer network structure for proton exchange membrane fuel cell derived from polymeric dispersionCited by 13, Year 2023 πŸ”§βš‘
  • Low-Pt anodes with gradient molybdenum isomorphism for high performance and anti-CO poisoning PEMFCsCited by 8, Year 2024 ⚑πŸ§ͺ
  • Proton exchange membranes with functionalized sulfonimide and phosphonic acid groups for next-generation fuel cells operating at 120Β° CCited by 6, Year 2024 πŸ”‹πŸŒ‘οΈ
  • Sulfur/carbon cathode composite with LiI additives for enhanced electrochemical performance in all-solid-state lithium-sulfur batteriesCited by 5, Year 2023 πŸ”‹βš‘
  • Rational design of perfluorinated sulfonic acid ionic sieve modified separator for high-performance Li-S batteryCited by 3, Year 2020 πŸ”‹πŸ”¬
  • Phosphate-grafted polyethyleneimine-induced multifunctional cerium oxide as an antioxidant for simultaneously enhancing the proton conductivity and durability of proton exchange membrane fuel cellsCited by 2, Year 2024 πŸŒΏπŸ”¬
  • Rationally designing anti-poisoning polymer electrolyte by electronegativity modulation: Towards efficient ammonia-cracked hydrogen fuel cellsCited by 2, Year 2024 πŸ’‘πŸ”‹
  • Highly durable anion exchange membranes with sustainable mitigation of hydroxide attacks for water electrolysisCited by 1, Year 2024 πŸ’§πŸ”‹
  • Grafting of Amine End-Functionalized Side-Chain Polybenzimidazole Acid–Base Membrane with Enhanced Phosphoric Acid Retention Ability for High-Temperature Proton ExchangeCited by 1, Year 2024 πŸ”¬πŸ’‘
  • Modification of sulfonated poly (arylene ether nitrile) proton exchange membranes by poly (ethylene-co-vinyl alcohol)Cited by 1, Year 2023 πŸ”‹πŸ’§
  • Evolution of the network structure and voltage loss of anode electrode with the polymeric dispersion in PEM water electrolyzerYear 2024 πŸ”§πŸ’‘
  • NH3 to H2, Exploration from Pyrolytic Key Materials to Device Structure DesignCited by 0, Year 2023 πŸ”¬βš‘
  • In situ programming acid-base pair proton-conductive channels of perfluorosulfonic acid membrane for fuel cellsYear 2023 πŸ§ͺπŸ’‘