Qian Sun | Materials Science | Young Scientist Award

Dr. Qian Sun | Materials Science | Young Scientist Award

Postdoc, Northwestern Polytechnical University, China

Dr. Qian Sun is a Postdoctoral researcher at Northwestern Polytechnical University, specializing in Mechanics of Materials and Shape Memory Alloys. He earned his Ph.D. from Hiroshima University, Japan, in 2024, following a Master’s degree in the same field. His research focuses on Martensitic Phase Transformation, Impact Dynamics, and Thermomechanical Training of materials. Dr. Sun has published widely in high-impact journals and contributed to advancements in the performance of iron-based shape memory alloys. He has also received prestigious awards, including the China Scholarship Council and JASSO Scholarship. 📚🔬📈

 

Publication Profile

Scopus

Orcid

Google Scholar

Work Experience

Since April 2024, Dr. Qian Sun has been serving as a Postdoctoral Researcher at the School of Civil Aviation at Northwestern Polytechnical University. In this role, he continues his pioneering work in Mechanics of Materials, focusing on Shape Memory Alloys and Impact Dynamics. Dr. Sun’s research contributes to advancing the field of civil aviation by enhancing the performance and reliability of materials used in critical applications. His position allows him to combine his expertise in materials science with practical applications in engineering, propelling innovative developments in aerospace technology. 🔧🚀

 

Educational Background

Dr. Qian Sun’s academic journey is marked by a strong foundation in Materials Science and Engineering. He completed his Bachelor’s degree at Nanjing Forestry University, China (2014-2018). He then pursued advanced studies at Hiroshima University, Japan, where he earned his Master’s (2019-2021) and Doctoral degrees (2021-2024) in Mechanics of Materials from the Graduate School of Engineering and the Graduate School of Advanced Science and Engineering. Throughout his academic career, Dr. Sun’s work focused on the development and characterization of Shape Memory Alloys and other advanced materials. 🔬🌍

 

Research Interests

Dr. Qian Sun’s research spans multiple advanced topics in Materials Science. His primary focus is on the Mechanics of Materials, where he explores areas such as Engineering Mechanics and Experimental Mechanics to improve material behavior under various conditions. His work on Impact Dynamics involves studying how materials respond to dynamic forces, while his expertise in Shape Memory Alloys and Martensitic Phase Transformation seeks to enhance material recovery and performance. Additionally, Dr. Sun investigates Materials Characterization and Thermomechanical Training Treatments, aiming to advance the development of high-performance materials for modern engineering applications. 🛠️⚙️

 

Teaching Experience

Dr. Qian Sun has gained valuable teaching experience in the field of Computational Solid Mechanics. From 2021, he served as a Teaching Assistant, supporting students in mastering complex computational methods used in solid mechanics. In 2022, he took on the role of Teaching Fellow, where he not only continued his teaching in computational solid mechanics but also incorporated Japanese language lessons, enabling students to navigate technical content in both English and Japanese. His diverse teaching roles reflect his commitment to educating the next generation of engineers and researchers. 🏫💻

 

Awards and Recognitions

Dr. Qian Sun’s exceptional academic achievements have been recognized through prestigious awards. In 2021, he was honored with the China Scholarship Council award, supporting his advanced studies and research. Prior to that, in 2020, he received the Japan Student Services Organization (JASSO) Scholarship, enabling him to further pursue his academic interests in Japan. These awards underscore Dr. Sun’s commitment to excellence in research and education, reflecting his drive for innovation in materials science and engineering. 🌏🎓

 

Research Focus

Dr. Qian Sun’s research focuses on Mechanics of Materials and Engineering Mechanics, with a particular interest in Shape Memory Alloys (SMAs) and Martensitic Phase Transformation. His work explores the impact dynamics of SMAs, especially in the context of thermo-mechanical treatments and cyclic loading. Dr. Sun has made significant contributions to understanding the shape recovery behavior and deformation characteristics of Fe-Mn-Si alloys. His studies also include advanced materials characterization methods, contributing to the development of additively manufactured SMAs. 🌡️⚙️ His work enhances applications in structural integrity and material performance across engineering fields.

 

Publication Top Notes

  • “Effect of impact deformation on shape recovery behavior in Fe-Mn-Si shape memory alloy under shape memory training process with cyclic thermo-mechanical loading” – Cited by 16, 2021 🌡️
  • “Bending fracture strength of the pipe joint using iron-based shape memory alloy (Fe-SMA) subjected to different expansion methods at various deformation rates” – Cited by 13, 2022 🔧
  • “Effect of deformation rate on the axial joint strength made of Fe-SMA” – Cited by 11, 2022 🏗️
  • “Whole martensitic transformation process in Fe–Mn–Si–Cr shape memory alloy by improved characterization of volume resistivity” – Cited by 7, 2023 🔬
  • “An Evaluation on Strain Rate Sensitivity of Phase Transformation in Fe-28Mn-6Si-5Cr Shape Memory Alloy during Loading and Heating Processes by Measuring Volume Resistivity” – Cited by 1, 2019 ⚙️
  • “An improvement of shape memory effect in Fe-Mn-Si shape memory alloy by training process under impact tensile loading”- 2024 🔄
  • “A Review of Additively Manufactured Iron-Based Shape Memory Alloys” – 2024 🖨️

Hyunho Lee | Materials Science | Best Researcher Award

Hyunho Lee | Materials Science | Best Researcher Award

Prof Hyunho Lee, Kwangwoon University, South Korea

Prof. Hyunho Lee is an Assistant Professor in the Department of Electronic Engineering at Kwangwoon University, South Korea, since March 2020. He earned his PhD in Electrical and Computer Engineering from Seoul National University in August 2018, where he also received a Distinguished Ph.D. Dissertation Award. His research focuses on light-emitting diodes, thin film solar cells, field-effect transistors, and printed flexible electronics. He has published numerous articles in esteemed journals and received multiple awards, including the GPVC 2018 Best Oral Presentation Award. Prof. Lee continues to contribute significantly to the field of electronic engineering. 🌟🔬

Publication profile

google scholar

Education and Academic Background 

Prof. Lee obtained his Ph.D. in Electrical and Computer Engineering from Seoul National University in August 2018, where he conducted significant research under the guidance of Prof. Changhee Lee. His educational background, which also includes a Bachelor’s degree from the Korea Advanced Institute of Science and Technology (KAIST), showcases a strong foundation in electrical engineering principles. This academic pedigree, combined with his active role in research and teaching as an Assistant Professor at Kwangwoon University, underscores his qualifications and commitment to advancing knowledge in his field. 

Research Experience 

With a robust research portfolio, Prof. Lee has gained extensive experience in both academic and applied settings. His postdoctoral positions at prestigious institutions like the University of Illinois Urbana Champaign and Seoul National University have enriched his expertise in materials science. His role as a research assistant has further honed his skills, providing him with a comprehensive understanding of the complexities involved in developing cutting-edge electronic materials. This blend of theoretical knowledge and practical experience makes him a well-rounded candidate for the award. 

Research Interests 

Prof. Hyunho Lee has established a remarkable research trajectory in the field of electronic engineering, focusing on innovative technologies such as light-emitting diodes (LEDs), thin-film solar cells, field-effect transistors, and printed electronics. His work with quantum dots, perovskite materials, and organic semiconductors positions him at the forefront of materials science and energy solutions, making significant contributions to the development of efficient, sustainable technologies. These areas of interest are not only critical to advancing electronic applications but also align with global efforts toward renewable energy and flexible electronics, highlighting his impact on both scientific and industrial fronts. 

Honors and Awards 

Prof. Lee’s accolades reflect his dedication and excellence in research. Notably, he received the Distinguished Ph.D. Dissertation Award for his work on the stability analysis of perovskite solar cells and light-emitting diodes. His recognition through awards such as the GPVC 2018 Best Oral Presentation Award and the KIDS Award highlights his impactful contributions to conferences and academic communities. These honors not only validate his research findings but also showcase his ability to communicate complex ideas effectively, a crucial skill for any leading researcher.

Research focus 

Prof. Hyunho Lee’s research primarily centers on advanced materials for solar cells and light-emitting diodes (LEDs), with a particular emphasis on colloidal quantum dots and perovskite structures. His work explores device structures, ion diffusion mechanisms, and degradation phenomena, aiming to enhance the efficiency and stability of photovoltaic devices. He also investigates the integration of innovative materials like Al-doped TiO₂ for electron extraction layers and the development of multifunctional transparent electrodes. Overall, his contributions significantly advance the fields of renewable energy and optoelectronics. ☀️🔋💡

Publication top notes

Towards the commercialization of colloidal quantum dot solar cells: perspectives on device structures and manufacturing

Analysis of ion‐diffusion‐induced Interface degradation in inverted perovskite solar cells via restoration of the Ag electrode

Direct Evidence of Ion-Migration-Induced Degradation of Ultrabright Perovskite Light-Emitting Diodes

Enhanced light trapping and power conversion efficiency in ultrathin plasmonic organic solar cells: a coupled optical-electrical multiphysics study on the effect of …

Current status and perspective of colored photovoltaic modules

Degradation mechanism of blue thermally activated delayed fluorescent organic light-emitting diodes under electrical stress

Universal Elaboration of Al‐Doped TiO2 as an Electron Extraction Layer in Inorganic–Organic Hybrid Perovskite and Organic Solar Cells

Conclusion 

Prof. Hyunho Lee’s extensive research interests, solid educational background, rich experience, notable honors, and impactful publications, he stands out as an exemplary candidate for the Best Researcher Award. His commitment to advancing electronic technologies not only contributes to the academic community but also holds promise for practical applications that can drive societal change. Awarding him this honor would recognize his contributions and inspire further advancements in his field. 

Zhihai Ke | Materials Science Award | Best Researcher Award

Prof Dr. Zhihai Ke | Materials Science Award | Best Researcher Award

Prof Dr. Zhihai Ke, The Chinese University of Hong Kong, Shenzhen, China

 

Prof. Dr. Zhihai Ke is an Assistant Professor and the Director of the Undergraduate Chemistry Programme at The Chinese University of Hong Kong, Shenzhen. He earned his Ph.D. in Chemistry from The Chinese University of Hong Kong in 2012, following a B.Sc. in Applied Chemistry from Sun Yat-Sen University in 2008. He completed postdoctoral research at the National University of Singapore. Prof. Ke specializes in catalysis, organic synthesis, and material chemistry, contributing extensively to journals like ACS Catalysis, Angewandte Chemie, and Small. His work often explores metal-organic frameworks and single-atom catalysts. He holds an ORCID ID and is an active scholar on Google Scholar.

Publication profile

Orcid

Google scholar

Academic Qualifications 🎓

Prof. Dr. Zhihai Ke’s academic journey began with a B.Sc. in Applied Chemistry from Sun Yat-Sen University (2004-2008), followed by a Ph.D. in Chemistry from The Chinese University of Hong Kong (2008-2012). He then advanced his career as a Postdoctoral Fellow in the Department of Chemistry at the National University of Singapore from October 2012 to July 2015. Subsequently, he served as a Research Assistant Professor at The Chinese University of Hong Kong until July 2020. Currently, he is the Director of the Undergraduate Chemistry Programme and an Assistant Professor at the School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, where he continues to contribute to the field of chemistry. 🌟

 

Awards and Recognition 🏆

Prof. Dr. Zhihai Ke has received several prestigious awards throughout his career, highlighting his contributions to the field of chemistry. In 2018, he was honored with the Asian Core Program Lectureship Award (Asia核心项目讲座奖), recognizing his excellence in academic presentations. In 2021, he was designated as a Shenzhen Overseas High-Caliber Personnel (Level C) and named a Presidential Young Scholar (校长青年学者), showcasing his impactful research. He further distinguished himself in 2023 with the Open Science Excellent Author Program award, followed by the 2023 Excellent Performance Grant, celebrating his outstanding achievements in academia and research. 🌟

 

Research Focus Areas 🔬

Prof. Dr. Zhihai Ke’s research primarily revolves around catalysis and synthetic chemistry, focusing on innovative methodologies for asymmetric synthesis and reaction mechanisms. His notable contributions include the development of catalytic processes such as bromoetherification, bromocyclization, and enantioselective transformations using various Lewis acids and base catalysts. Additionally, his work on peptidomimetics and organogels showcases his interest in designing broad-spectrum inhibitors, particularly against viral proteases. Prof. Ke’s research also emphasizes the exploration of novel materials, including metallogels and nanostructures, highlighting a commitment to advancing green chemistry and sustainable practices. 🌱✨

 

Publication Top Notes  

  • Catalytic Asymmetric Bromoetherification and Desymmetrization of Olefinic 1,3-Diols with C2-Symmetric Sulfides – Cited by: 182 (2014) 📄
  • Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases – Cited by: 105 (2013) 🦠
  • A Platinum(II) Terpyridine Metallogel with an L‐Valine‐Modified Alkynyl Ligand: Interplay of Pt⋅⋅⋅Pt, π–π and Hydrogen‐Bonding Interactions – Cited by: 96 (2013) 💎
  • Applications of selenonium cations as Lewis acids in organocatalytic reactions – Cited by: 90 (2018) ⚗️
  • Conformational and supramolecular properties of main chain and cyclic click oligotriazoles and polytriazoles – Cited by: 87 (2010) 📚
  • Lewis base catalyzed stereo‐and regioselective bromocyclization – Cited by: 80 (2017) 🔄
  • Electrochemical self-assembly of ZnO nanoporous structures – Cited by: 80 (2007) ⚡
  • Desymmetrizing enantio-and diastereoselective selenoetherification through supramolecular catalysis – Cited by: 77 (2018) 🧪
  • Electrochemical synthesis of orientation-ordered ZnO nanorod bundles – Cited by: 61 (2007) 🌐
  • Lewis basic sulfide catalyzed electrophilic bromocyclization of cyclopropylmethyl amide – Cited by: 48 (2015) ⚙️

Conclusion

Prof. Dr. Zhihai Ke is highly suitable for the Best Researcher Award. His achievements, leadership, and multiple prestigious awards mark him as an outstanding researcher in the field of chemistry.

Zeev Zalevsky | Materials Science | Best Researcher Award

Zeev Zalevsky | Materials Science | Best Researcher Award

Prof Zeev Zalevsky, Bar-Ilan University, Israel

Prof. Zeev Zalevsky: A Candidate for the Best Researcher Award.

Publication profile

google scholar

Education

Prof. Zeev Zalevsky has a solid educational background, with a B.Sc. in Electrical Engineering, Cum Laude, from Tel Aviv University (1989-1993). He pursued direct Ph.D. studies at the same university from 1993 to 1996, focusing on “Unconventional Optical Processors for Pattern Recognition and Signal Processing” under the guidance of Prof. David Mendlovic and Prof. Amos Hardy.

Professional Occupation

Prof. Zalevsky has extensive professional experience, starting as a teaching assistant at Tel Aviv University and later serving as an adjunct lecturer at various institutions, including Ariel Academic College and Weizmann Institute. He has held significant roles in both academia and industry, such as Project Officer in the Israeli Air Force’s R&D Department (1996-2001) and Founder and CTO of several technology companies. His contributions to electro-optics and photonics are particularly noteworthy, including his long tenure at Bar-Ilan University, where he founded and led the electro-optics track and the Nano-Photonics Center at BINA.

Scientific Achievements and Awards

Prof. Zalevsky’s work has earned him numerous awards and recognitions. He was instrumental in the development of the Kinect’s optical sensor, which garnered international acclaim and several prestigious awards, including the MacRobert Award for engineering innovation. His research has also been recognized by the National Institutes of Health (NIH), the European Commission, and other prominent organizations. Prof. Zalevsky has also mentored many successful researchers, further amplifying his impact on the scientific community.

Publications and Patents

Prof. Zalevsky’s prolific publication record includes influential works such as “The Fractional Fourier Transform” and “Space–Bandwidth Product of Optical Signals and Systems.” He holds multiple patents, including those for extended depth of focus imaging systems and three-dimensional sensing technologies. His research has significantly advanced the fields of optics, photonics, and biomedical engineering, with applications ranging from ophthalmic devices to remote sensing of biomedical parameters.

Conclusion

Prof. Zeev Zalevsky’s impressive academic background, extensive professional experience, and significant contributions to research make him a highly suitable candidate for the Best Researcher Award. His pioneering work in optics and photonics, coupled with his leadership in both academia and industry, demonstrates his exceptional qualifications for this honor.

Research focus

Zeev Zalevsky is a prominent researcher whose work primarily focuses on optical systems, particularly in areas such as superresolution imaging, 3D sensing, and extended depth of focus. His research includes developing innovative optical methods and systems, such as the Gerchberg-Saxton algorithm in the fractional Fourier domain and techniques for speckle pattern analysis. Zalevsky has made significant contributions to the fields of optical signal processing, synthetic aperture superresolution, and depth-varying light fields. His work is widely recognized, with numerous patents and publications reflecting his expertise in optics and photonics. 🌐🔬📸

Publication top notes

The fractional Fourier transform

Space–bandwidth product of optical signals and systems

Optical method and system for extended depth of focus

Depth-varying light fields for three dimensional sensing

Synthetic aperture superresolution with multiple off-axis holograms

Range mapping using speckle decorrelation

Gerchberg–Saxton algorithm applied in the fractional Fourier or the Fresnel domain

Fractional hilbert transform

Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern

Three-dimensional sensing using speckle patterns

 

 

Wenyao Zhang | Materials Science | Young Scientist Award

Dr Wenyao Zhang |  Materials Science |  Young Scientist Award

professor at  Nanjing university of science and technology, China

Dr. Wenyao Zhang is a distinguished professor at the School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology in Nanjing, China. He currently leads research in the field of aqueous Zn-ion batteries, focusing on the surface chemistry of Zn metal and the stabilization of metal clusters.

Publication profile

Google Scholar

Educational Background:

  • Ph.D. in Materials Science & Engineering (2012 – 2017): Nanjing University of Science and Technology, China.
  • Joint Ph.D. in Colloid Chemistry (2015 – 2017): Max Planck Institute of Colloids and Interfaces, Germany.
  • B.Eng. in Materials Chemistry (2008 – 2012): Nanjing University of Science and Technology, China.

Dr. Zhang’s research contributions have significantly advanced the understanding and application of nanomaterials in energy storage and conversion technologies.

Professional Experience:

  • 2022 – Present: Professor, Overseas High-Level Talent Recruitment Programs, Nanjing University of Science & Technology.
    • Research: Zn metal surface chemistry, aqueous Zn-ion batteries, stabilization of atomic/subnanometric metal clusters.
  • 2020 – 2022: Postdoctoral Researcher, Chemical & Materials Engineering, University of Alberta, Canada.
    • Co-Advisors: Prof. Ken Cadien, Prof. Zhi Li.
  • 2017 – 2020: Postdoctoral Researcher, Waterloo Institute for Nanotechnology, University of Waterloo, Canada.
    • Co-Advisors: Prof. Zhongwei Chen, Prof. Aiping Yu.

Academic Background:

Dr. Zhang earned his Ph.D. in Materials Science and Engineering from Nanjing University of Science and Technology in 2017, under the supervision of Prof. Xin Wang. He conducted joint Ph.D. research in Colloid Chemistry at the Max Planck Institute of Colloids and Interfaces in Germany, under Prof. Markus Antonietti. His research during this period focused on carbon-nitrogen materials for electrocatalysis and lithium-ion batteries, and carbon nitride-based materials for photoelectrochemical water splitting.

Materials Science Research Focus:

Dr. Wenyao Zhang’s research in materials science primarily revolves around energy storage and conversion technologies, with a significant emphasis on the following areas:

  1. Aqueous Zn-ion Batteries:
    • Zn Metal Surface Chemistry: Investigating the chemical interactions and surface modifications of zinc metal to enhance the performance and stability of aqueous Zn-ion batteries.
    • Stabilization of Metal Clusters: Developing molecular trapping strategies to stabilize atomic and subnanometric metal clusters, which are crucial for improving the efficiency and longevity of battery systems.
  2. Electrocatalysis:
    • Carbon-Nitrogen Materials: Designing novel carbon-nitrogen materials to serve as supports for electrocatalysts, enhancing their activity and durability for various electrochemical reactions.
  3. Photoelectrochemical Water Splitting:
    • Carbon Nitride-Based Materials: Creating high-performance carbon nitride-based materials to act as catalysts for photoelectrochemical water splitting, aiming to generate hydrogen efficiently using solar energy.
  4. Nanostructured Materials:
    • Growth of MnO2 on Carbon Nanotubes: Controlled synthesis of nanostructured manganese dioxide on carbon nanotubes to develop high-performance electrochemical capacitors.

Dr. Zhang’s innovative research integrates advanced material design and synthesis techniques to address critical challenges in energy storage and conversion, contributing to the development of sustainable and efficient energy solutions.

Citations:

  • Total Citations: 1,645
  • Citations Since 2019: 1,437
  • h-index: 21
  • i10-index: 28

Publication Top Notes

  • Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance
    • P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu, X. Wang, Journal of Power Sources, 266, 384-392, 2014
    • Citations: 183
  • Palladium nanoparticles supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation
    • W. Zhang, H. Huang, F. Li, K. Deng, X. Wang, Journal of Materials Chemistry A, 2 (44), 19084-19094, 2014
    • Citations: 169
  • Defect‐Enriched Nitrogen Doped–Graphene Quantum Dots Engineered NiCo2S4 Nanoarray as High‐Efficiency Bifunctional Catalyst for Flexible Zn‐Air Battery
    • W. Liu, B. Ren, W. Zhang, M. Zhang, G. Li, M. Xiao, J. Zhu, A. Yu, Small, 15 (44), 1903610, 2019
    • Citations: 99
  • Merging single‐atom‐dispersed iron and graphitic carbon nitride to a joint electronic system for high‐efficiency photocatalytic hydrogen evolution
    • W. Zhang, Q. Peng, L. Shi, Q. Yao, X. Wang, A. Yu, Z. Chen, Y. Fu, Small, 15 (50), 1905166, 2019
    • Citations: 90
  • Zn-free MOFs like MIL-53 (Al) and MIL-125 (Ti) for the preparation of defect-rich, ultrafine ZnO nanosheets with high photocatalytic performance
    • H. Xiao, W. Zhang, Q. Yao, L. Huang, L. Chen, B. Boury, Z. Chen, Applied Catalysis B: Environmental, 244, 719-731, 2019
    • Citations: 90
  • Controlled growth of nanostructured MnO2 on carbon nanotubes for high-performance electrochemical capacitors
    • H. Huang, W. Zhang, Y. Fu, X. Wang, Electrochimica Acta, 152, 480-488, 2015
    • Citations: 87
  • Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries
    • W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan, S. Zhai, R. Feng, N. Chen, Nature Communications, 13 (1), 5348, 2022
    • Citations: 84
  • A general approach for fabricating 3D MFe2O4 (M= Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes
    • W. Zhang, Y. Fu, W. Liu, L. Lim, X. Wang, A. Yu, Nano Energy, 57, 48-56, 2019
    • Citations: 82
  • A “trimurti” heterostructured hybrid with an intimate CoO/Co x P interface as a robust bifunctional air electrode for rechargeable Zn–air batteries
    • Y. Niu, M. Xiao, J. Zhu, T. Zeng, J. Li, W. Zhang, D. Su, A. Yu, Z. Chen, Journal of Materials Chemistry A, 8 (18), 9177-9184, 2020
    • Citations: 81
  • One-pot synthesis of nickel-modified carbon nitride layers toward efficient photoelectrochemical cells
    • W. Zhang, J. Albero, L. Xi, K. M. Lange, H. Garcia, X. Wang, M. Shalom, ACS Applied Materials & Interfaces, 9 (38), 32667-32677, 2017
    • Citations: 67