Qian Sun | Materials Science | Young Scientist Award

Dr. Qian Sun | Materials Science | Young Scientist Award

Postdoc, Northwestern Polytechnical University, China

Dr. Qian Sun is a Postdoctoral researcher at Northwestern Polytechnical University, specializing in Mechanics of Materials and Shape Memory Alloys. He earned his Ph.D. from Hiroshima University, Japan, in 2024, following a Master’s degree in the same field. His research focuses on Martensitic Phase Transformation, Impact Dynamics, and Thermomechanical Training of materials. Dr. Sun has published widely in high-impact journals and contributed to advancements in the performance of iron-based shape memory alloys. He has also received prestigious awards, including the China Scholarship Council and JASSO Scholarship. 📚🔬📈

 

Publication Profile

Scopus

Orcid

Google Scholar

Work Experience

Since April 2024, Dr. Qian Sun has been serving as a Postdoctoral Researcher at the School of Civil Aviation at Northwestern Polytechnical University. In this role, he continues his pioneering work in Mechanics of Materials, focusing on Shape Memory Alloys and Impact Dynamics. Dr. Sun’s research contributes to advancing the field of civil aviation by enhancing the performance and reliability of materials used in critical applications. His position allows him to combine his expertise in materials science with practical applications in engineering, propelling innovative developments in aerospace technology. 🔧🚀

 

Educational Background

Dr. Qian Sun’s academic journey is marked by a strong foundation in Materials Science and Engineering. He completed his Bachelor’s degree at Nanjing Forestry University, China (2014-2018). He then pursued advanced studies at Hiroshima University, Japan, where he earned his Master’s (2019-2021) and Doctoral degrees (2021-2024) in Mechanics of Materials from the Graduate School of Engineering and the Graduate School of Advanced Science and Engineering. Throughout his academic career, Dr. Sun’s work focused on the development and characterization of Shape Memory Alloys and other advanced materials. 🔬🌍

 

Research Interests

Dr. Qian Sun’s research spans multiple advanced topics in Materials Science. His primary focus is on the Mechanics of Materials, where he explores areas such as Engineering Mechanics and Experimental Mechanics to improve material behavior under various conditions. His work on Impact Dynamics involves studying how materials respond to dynamic forces, while his expertise in Shape Memory Alloys and Martensitic Phase Transformation seeks to enhance material recovery and performance. Additionally, Dr. Sun investigates Materials Characterization and Thermomechanical Training Treatments, aiming to advance the development of high-performance materials for modern engineering applications. 🛠️⚙️

 

Teaching Experience

Dr. Qian Sun has gained valuable teaching experience in the field of Computational Solid Mechanics. From 2021, he served as a Teaching Assistant, supporting students in mastering complex computational methods used in solid mechanics. In 2022, he took on the role of Teaching Fellow, where he not only continued his teaching in computational solid mechanics but also incorporated Japanese language lessons, enabling students to navigate technical content in both English and Japanese. His diverse teaching roles reflect his commitment to educating the next generation of engineers and researchers. 🏫💻

 

Awards and Recognitions

Dr. Qian Sun’s exceptional academic achievements have been recognized through prestigious awards. In 2021, he was honored with the China Scholarship Council award, supporting his advanced studies and research. Prior to that, in 2020, he received the Japan Student Services Organization (JASSO) Scholarship, enabling him to further pursue his academic interests in Japan. These awards underscore Dr. Sun’s commitment to excellence in research and education, reflecting his drive for innovation in materials science and engineering. 🌏🎓

 

Research Focus

Dr. Qian Sun’s research focuses on Mechanics of Materials and Engineering Mechanics, with a particular interest in Shape Memory Alloys (SMAs) and Martensitic Phase Transformation. His work explores the impact dynamics of SMAs, especially in the context of thermo-mechanical treatments and cyclic loading. Dr. Sun has made significant contributions to understanding the shape recovery behavior and deformation characteristics of Fe-Mn-Si alloys. His studies also include advanced materials characterization methods, contributing to the development of additively manufactured SMAs. 🌡️⚙️ His work enhances applications in structural integrity and material performance across engineering fields.

 

Publication Top Notes

  • “Effect of impact deformation on shape recovery behavior in Fe-Mn-Si shape memory alloy under shape memory training process with cyclic thermo-mechanical loading” – Cited by 16, 2021 🌡️
  • “Bending fracture strength of the pipe joint using iron-based shape memory alloy (Fe-SMA) subjected to different expansion methods at various deformation rates” – Cited by 13, 2022 🔧
  • “Effect of deformation rate on the axial joint strength made of Fe-SMA” – Cited by 11, 2022 🏗️
  • “Whole martensitic transformation process in Fe–Mn–Si–Cr shape memory alloy by improved characterization of volume resistivity” – Cited by 7, 2023 🔬
  • “An Evaluation on Strain Rate Sensitivity of Phase Transformation in Fe-28Mn-6Si-5Cr Shape Memory Alloy during Loading and Heating Processes by Measuring Volume Resistivity” – Cited by 1, 2019 ⚙️
  • “An improvement of shape memory effect in Fe-Mn-Si shape memory alloy by training process under impact tensile loading”- 2024 🔄
  • “A Review of Additively Manufactured Iron-Based Shape Memory Alloys” – 2024 🖨️

Naglaa Roushdy Mohamed Ahamed | Materials science | Women Researcher Award

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed | Materials science | Women Researcher Award

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed, Electronics Materials Dep. Advanced Technology& New Materials Research Inst., City of Scientific Research & Technological Applications (SRTACity),, Egypt

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed is a skilled physicist with a Ph.D. in Physics from Alexandria University (2014). Her research interests include thin film preparation, nanotechnology applications, solar cell technology, and superconductivity. With expertise in electrical, optical, and thermal characterization, she has contributed to advanced material science. Dr. Naglaa has worked as a researcher assistant in superconductivity and inter-metallic glasses at Alexandria University, focusing on thin film techniques like sputtering and dip coating. She holds multiple certifications, including in computer driving and English language proficiency. 🌟🔬💻🔋👩‍🔬

 

Publication Profile

Google Scholar

Academic Background and Certifications

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed holds a Ph.D. in Physics (2014) from Alexandria University, Egypt, where she also earned her M.Sc. (2007) and B.Sc. (2004) in Physics. She has obtained several certifications, including an excellent Local Computer Driving License from the Arab Academy for Science and Technology (2006) and the International Computer Driving License (ICDL) in 2010. Additionally, she earned a Certification in English Language from Alexandria University’s Faculty of Arts in 2013. Dr. Naglaa’s academic credentials highlight her dedication to continuous learning and excellence. 🎓💻📚🖥️🌟

Professional Experience

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed has extensive professional experience in the field of physics. From 2005 to 2007, she worked as a researcher assistant in the superconductivity and inter-metallic glasses lab at Alexandria University. She contributed to the preparation of superconductivity bulk samples and participated in new research in the lab. Between 2007 and 2009, Dr. Naglaa focused on characterizing samples using XRD tools and analyzing the data. Additionally, she gained hands-on experience in thin film preparation using various techniques such as SILAR, dip coating, and sputtering. 🔬🧪⚡📊🧑‍🔬

Research Interests

Assoc. Prof. Dr. Naglaa Roushdy Mohamed Ahamed’s research spans a range of cutting-edge topics in physics and material science. Her primary areas of interest include thin film preparation and application for advanced materials, along with electrical, optical, and thermal characterization of materials. She also explores solar cell technology to advance renewable energy solutions, delves into the applications of nanotechnology, and investigates the properties of superconductivity for innovative energy solutions. Her work contributes significantly to the development of materials for sustainable technology. 🔬⚡🌞🧪🔋

 

Publication Top Notes

  • Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique – Cited by: 204 📚 | Year: 2008
  • Structural and optical characteristics of nano-sized structure of Zn0.5Cd0.5S thin films prepared by dip-coating method – Cited by: 96 📚 | Year: 2009
  • Design, fabrication and optical characterizations of pyrimidine fused quinolone carboxylate moiety for photodiode applications – Cited by: 42 📚 | Year: 2020
  • Influence of Cd-content on structural and optical dispersion characteristics of nanocrystalline Zn1− xCdxS (0⩽ x⩽ 0.9) films – Cited by: 37 📚 | Year: 2015
  • Controlling the crystallite size and influence of the film thickness on the optical and electrical characteristics of nanocrystalline Cu2S films – Cited by: 37 📚 | Year: 2012
  • Optical sensing performance characteristics of Schottky devices diodes based nano-particle disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl) azo]-2-naphthalenesulfonate – Cited by: 34 📚 | Year: 2018
  • Synthesis, molecular, electronic structure, linear and non-linear optical and phototransient properties of 8-methyl-1, 2-dihydro-4H-chromeno [2, 3-b] quinoline-4, 6 (3H)-dione – Cited by: 34 📚 | Year: 2018
  • Study of optical properties of nanostructured PbS films – Cited by: 33 📚 | Year: 2010
  • Synthesis, spectroscopic, DFT and optoelectronic studies of 2-benzylidene-3-hydroxy -1-(5,6-diphenyl-1,2,4-triazine-3-yl)hydrazine metal complexes – Cited by: 28 📚 | Year: 2017
  • Exploring the molecular spectroscopic and electronic characterization of nanocrystalline Metal-free phthalocyanine: a DFT investigation – Cited by: 27 📚 | Year: 2023
  • Synthesis, DFT study and photoelectrical characterizations of the novel 4-methoxyfuro [3, 2: 6, 7] chromeno [2, 3-e] benzo [b][1, 4] diazepin-5 (12H)-one – Cited by: 24 📚 | Year: 2018
  • Synthesis, DFT band structure calculations, optical and photoelectrical characterizations of the novel 5-hydroxy-4-methoxy-7-oxo-7H-furo [3, 2-g] chromene-6-carbonitrile (HMOFCC) – Cited by: 22 📚 | Year: 2017
  • Synthesis and photosensitivity characterizations of 9-(6-bromo-4-oxo-4H-chromen-3-yl)-3, 4, 6, 7-tetrahydro-3, 3, 6, 6-tetramethyl-2H-xanthene-1, 8-(5H, 9H)-dione (BOCTTX) – Cited by: 22 📚 | Year: 2016
  • Facile synthesis and photodetection characteristics of novel nanostructured triazinyliminomethylpyrano [3, 2-c] quinoline-based hybrid heterojunction – Cited by: 19 📚 | Year: 2020
  • Synthesis, spectral characterization, DFT and photosensitivity studies of 1-{[(4-methoxy-5-oxo-5H-furo [3, 2-g] chromen-6-yl) methylidene] amino}-4, 6-dimethyl-2-oxo-1, 2 – Cited by: 18 📚 | Year: 2019

 

 

 

Nosipho Moloto | Materials Science | Best Researcher Award

 Prof. Dr. Nosipho Moloto | Materials Science | Best Researcher Award

Professor,  University of the Witwatersrand,  South Africa.

Nosipho Moloto is an accomplished researcher in the field of chemistry, currently serving as the Director of the ARUA Centre of Excellence in Materials, Energy & Nanotechnology at the University of the Witwatersrand. With a strong academic background, including a PhD and multiple prestigious awards, she has made significant contributions to nanoscience and nanotechnology, focusing on synthesizing novel nanomaterials for various applications. Her research output includes over 100 articles, patents, and a robust H-index. As a mentor, she supports numerous postgraduate students and actively participates in academic societies, showcasing her commitment to advancing scientific knowledge and education.

Publication Profile

Scopus 

Orcid

Educational Background 

Nosipho Moloto has a robust educational foundation in Chemistry, with a PhD from the University of the Witwatersrand and multiple degrees from the University of Zululand, including a Cum Laude MSc. This strong academic background underpins her research capabilities and demonstrates her commitment to excellence in her field.

Professional Experience

Currently serving as the Director of the ARUA Centre of Excellence in Materials, Energy, and Nanotechnology, Moloto has extensive experience in academia and research. Her career progression from lecturer to full professor and her roles at prestigious institutions like MIT highlight her leadership and expertise in advancing research in energy materials.

Research Contributions

With an H-index of 22, Nosipho Moloto has made significant contributions to the field of nanoscience and nanotechnology, particularly in synthesizing novel nanomaterials. Her research includes over 100 articles, two patents, and numerous invited presentations, indicating a prolific output and recognition in her field.

Awards and Recognition

Moloto’s numerous awards, such as the 2014 Distinguished Young Woman in Science and the 2023 National Science and Technology Forum Award, showcase her impactful contributions and the high regard in which she is held by her peers. Her selection for various prestigious committees further emphasizes her influence and leadership in scientific research.

Conclusion

In summary, Nosipho Moloto’s exemplary educational background, extensive professional experience, significant research contributions, and active engagement in community and mentorship roles make her an exceptional candidate for the Research for Best Researcher Award. Her achievements reflect not only her personal dedication to scientific advancement but also her broader commitment to enhancing research quality and capacity within her field. Recognizing her with this award would not only honor her individual accomplishments but also inspire future generations of researchers.

Publication Top Notes

  • Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating
    Zhang, H., Shui, T., Moloto, N., … Zhang, W., Sun, Z.
    Journal of Colloid and Interface Science, 2025, 678, pp. 1148–1157 📅
  • Evaluating the Hydrogen Evolution Reaction Activity of Colloidally Prepared PtSe2 and PtTe2 Catalysts in an Alkaline Medium
    Mxakaza, L.F., Mashindi, V., Linganiso, C.E., Moloto, N., Tetana, Z.N.
    ChemistryOpen, 2024, 13(10), e202400146 📅
  • Elucidating the local structure and electronic properties of a highly active overall alkaline water splitting NixCo1-xO/hollow carbon sphere catalyst
    Mashindi, V., Terban, M.W., Meira, D.M., … Barrett, D.H., Moloto, N.
    International Journal of Hydrogen Energy, 2024, 80, pp. 137–150 📅
  • Potential Gradient-Driven Dual-Functional Electrochromic and Electrochemical Device Based on a Shared Electrode Design
    Xu, G., Zhang, W., Zhu, G., … She, W., Sun, Z.
    Advanced Science, 2024, 11(28), 2401948 📅
  • Ultra-thin amphiphilic hydrogel electrolyte for flexible zinc-ion paper batteries
    Xia, H., Zhang, W., Miao, C., … Lu, W., Sun, Z.
    Energy and Environmental Science, 2024, 17(18), pp. 6507–6520 📅
  • Metal-support interactions of 2D carbon-based heterogeneous catalysts for the hydrogen evolution reaction
    Feng, W., Zhang, W., Lin, Q., … He, W., Sun, Z.
    Journal of Materials Chemistry A, 2024, 12(30), pp. 18866–18878 📅
  • Effects of reaction pH on regular nanorods and hierarchically structured β-Ga2O3 and their isopropanol sensing capabilities
    Gatsi, N.C., Mhlongo, G.H., Moloto, N., Erasmus, R.M., Ntwaeaborwa, O.M.
    Materialia, 2024, 34, 102101 📅
  • Investigation of Antimicrobial Activity and Cytotoxicity of Silver Nanoparticle Synthesized using Dopamine as a Reducing and Capping Agent
    Shumbula, N.P., Ndala, Z.B., Nkabinde, S.S., … Mlambo, M., Moloto, N.
    ChemistrySelect, 2024, 9(12), e202303328 📅
  • Cu2ZnSnS4/N-MWCNTs hybrid systems as counter electrode substitutes for platinum in dye-sensitized solar cells
    Mxakaza, L., Ngubeni, G., Moloto, N., Tetana, Z.
    Journal of Materials Research, 2024, 39(4), pp. 689–701 📅
  • Interfacial integration of ultra-thin flexible electrochemical capacitors via vacuum filtration based on gelatinized fibrous membranes
    Xie, Q., Lu, C., Yi, C., … Zhang, W., Sun, Z.
    Journal of Materials Chemistry A, 2024, Article in Press 📅

Arnaud Demortière | Materials Science | Best Researcher Award

Prof. Arnaud Demortière | Materials Science | Best Researcher Award

Director of research, LRCS Lab at CNRS, France

Dr. Arnaud Demortière is a highly accomplished researcher in materials science, currently serving as Director of Research at CNRS and head of Electron Microscopy and X-Ray Facilities at RS2E. With a PhD in Nanomaterials Science and an HDR, his academic achievements are complemented by an impressive research output, including 90 publications, an H-index of 36, and over 5700 citations. He has led multiple ANR-funded projects and contributed to high-profile European initiatives like Battery 2030+ and Horizon 2020. As a recipient of the CNRS RISE Innovation Award 2023, Dr. Demortière is recognized for his groundbreaking work in energy storage and his innovative startup, PreDeeption. Additionally, he has supervised 13 PhD students, fostering the next generation of scientists. His leadership in cross-disciplinary research, project management, and mentorship makes him a deserving candidate for the Research for Best Researcher Award.

Profile:

Education

Dr. Arnaud Demortière has an extensive and distinguished academic background, beginning with a Bachelor’s in Physics-Chemistry from Lyon 1 University in 2001. He continued his studies at Lyon 1 University and ENS Lyon, where he earned a Master’s in Condensed Matter Physics in 2003. His passion for materials science led him to pursue a PhD at Pierre & Marie Curie University (Paris 6) and CNRS, where he specialized in Nanomaterials Science and completed his doctorate in 2007.

Dr. Demortière further advanced his expertise through two prestigious postdoctoral fellowships—first at IPCMS-CNRS in Strasbourg, France, and later at Argonne National Laboratory in Chicago, USA, under the Department of Energy (DOE) Fellowship. In 2021, he achieved the “Habilitation à Diriger des Recherches” (HDR) from UPJV University in Amiens, France, a significant academic milestone that recognizes his authority to supervise doctoral research, particularly in the field of battery materials and imaging techniques.

Professional Experiences

Dr. Arnaud Demortière has an extensive professional background, marked by leadership roles at prestigious institutions. He currently serves as the Director of Research at CNRS and is the Head of Electron Microscopy and X-Ray Facilities at the RS2E Network. Since joining CNRS in 2014, he has led cross-disciplinary research initiatives focused on developing in-situ and operando techniques for imaging and diffraction, crucial for advancing battery materials research. His earlier experience includes positions at Illinois Institute of Technology and Argonne National Laboratory, where he conducted groundbreaking work in materials science. Dr. Demortière’s leadership extends to managing the Image, Data Science, and Diffraction (I&2D) team at the LRCS Laboratory, where he spearheads cutting-edge research in nanomaterials. His diverse roles also include serving as a scientific consultant for Chut! Magazine, reflecting his commitment to bridging the gap between scientific research and societal impact. His professional journey exemplifies innovation, leadership, and collaboration in advancing materials science.

Research Skills

Dr. Arnaud Demortière is a highly skilled researcher with an extensive background in nanomaterials and energy storage technologies. His expertise spans cutting-edge techniques such as in-situ and operando imaging, diffraction, and X-ray tomography, enabling detailed investigation of battery materials. As a leader of several interdisciplinary research teams and projects, including ANR and Horizon 2020 initiatives, Dr. Demortière has demonstrated exceptional proficiency in managing large-scale scientific endeavors. His research has resulted in 90 high-impact publications, an H-index of 36, and over 5700 citations, reflecting the significance of his contributions to the field. Additionally, his role as a mentor to PhD students and postdoctoral researchers highlights his ability to foster scientific talent and drive innovation. Dr. Demortière’s technical expertise, combined with his leadership in both academic and industrial collaborations, positions him as a key figure in advancing materials science and energy storage technologies.

Award And Recognitions

Dr. Arnaud Demortière, Director of Research at CNRS and Head of the Electron Microscopy and X-Ray Facilities at RS2E, is a distinguished figure in the field of materials science. He has authored 90 research articles, boasts an H-index of 36, with over 5700 citations, and has presented at 50 conferences, 18 of which were as an invited speaker. In recognition of his groundbreaking work, Dr. Demortière was awarded the prestigious CNRS RISE Innovation Award in 2023 for his innovative startup project, PreDeeption. He has led several large-scale research projects, including the ANR DESTINa-ion and DynamoBat, while actively contributing to European initiatives like Battery 2030+ and Horizon 2020. Dr. Demortière’s commitment to mentoring the next generation of scientists is reflected in his supervision of numerous PhD students. His career achievements, research excellence, and contributions to the field of energy storage solidify his reputation as a leading researcher in his domain.

Conclusion

Dr. Arnaud Demortière is a highly qualified candidate for the Research for Best Researcher Award due to his extensive contributions to materials science and energy storage. With an impressive academic background, including a PhD in Nanomaterials Science and an HDR, his research has made a significant impact on the field. His prolific output, with 90 publications, an H-index of 36, and over 5700 citations, demonstrates his expertise and influence. As a leader in major national and international research projects, such as ANR and Horizon 2020, he has successfully driven innovation in battery technology. Additionally, his receipt of the CNRS RISE Innovation Award 2023 for his startup project PreDeeption highlights his ability to bridge scientific research and practical applications. His mentorship of numerous PhD students and postdoctoral researchers further strengthens his candidacy, as he plays a vital role in shaping the next generation of scientists. Overall, Dr. Demortière exemplifies research excellence and innovation

Publication Top Notes

  • Improved ACOM Pattern Matching in 4D-STEM through Adaptive Sub-Pixel Peak Detection and Image Reconstruction
    • Authors: Folastre, N., Cao, J., Oney, G., Rauch, E.F., Demortière, A.
    • Year: 2024
    • Citations: 0
  • Identification of Degree of Ordering in Spinel LiNi0.5Mn1.5O4 through NMR and Raman Spectroscopies Supported by Theoretical Calculations
    • Authors: Oney, G., Sevillano, J.S., Yahia, M.B., Croguennec, L., Carlier, D.
    • Year: 2024
    • Citations: 1
  • Investigating Cathode Electrolyte Interphase Formation in NMC 811 Primary Particles through Advanced 4D-STEM ACOM Analysis
    • Authors: Gallegos-Moncayo, K., Jean, J., Folastre, N., Jamali, A., Demortière, A.
    • Year: 2024
    • Citations: 0
  • Binder-Free CNT Cathodes for Li-O2 Batteries with More Than One Life
    • Authors: Su, Z., Temprano, I., Folastre, N., Franco, A.A., Demortière, A.
    • Year: 2024
    • Citations: 0
  • Coupling Liquid Electrochemical TEM and Mass-Spectrometry to Investigate Electrochemical Reactions Occurring in a Na-Ion Battery Anode
    • Authors: Gallegos-Moncayo, K., Folastre, N., Toledo, M., Huo, D., Demortière, A.
    • Year: 2024 (Article in Press)
    • Citations: 0
  • Computational Model for Predicting Particle Fracture During Electrode Calendering
    • Authors: Xu, J., Paredes-Goyes, B., Su, Z., Demortière, A., Franco, A.A.
    • Year: 2023
    • Citations: 10
  • The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering
    • Authors: Cretu, S., Bradley, D.G., Feng, L.P.W., Demortière, A., Duchamp, M.
    • Year: 2023
    • Citations: 3
  • Molten Salt Synthesis of Multifaceted Pure-Phase Spinel LiNi0.5Mn1.5O4 Platelets
    • Authors: Oney, G., Olchowka, J., Demortière, A., Weill, F., Croguennec, L.
    • Year: 2023
    • Citations: 3
  • Study of the Delithiation Dynamics in a Single LiFePO4 Cathode Crystal via In Situ TEM Experiments and the Phase-Field Model
    • Authors: Yousfi, A., Gallegos, K., Jean, J., Boussinot, G., Demortière, A.
    • Year: 2023
    • Citations: 0
  • Study of Lithiation Dynamics in Primary Particles of Cathode Materials by In Situ Electrochemical Liquid TEM
    • Authors: Gallegos, K., Yousfi, A., Jean, J., Jamali, A., Demortière, A.
    • Year: 2023
    • Citations: 0

SUNG GYU PYO | Materials Science | Best Researcher Award

SUNG GYU PYO | Materials Science | Best Researcher Award

Prof SUNG GYU PYO, Chung-Ang University, South Korea

Based on the detailed profile of Prof. Sung Gyu Pyo, he appears highly suitable for the “Best Researcher Award.

Publication profile

google scholar

Research Interests

Nano Microstructural Control: Prof. Pyo’s expertise in the nano microstructural control and evolution in various materials demonstrates his innovative approach in advanced materials science. Semiconductor Materials: His work in semiconductor materials and processing, including process integration and interconnect technology, is at the forefront of technological advancements in electronics. Advanced Technologies: Prof. Pyo’s involvement in cutting-edge technologies like Atomic Force Microscopy (AFM), HBM 3D integration, MEMS/sensors, and packaging processes highlights his comprehensive understanding and contributions to modern engineering.

Education and Professional Experience

Educational Background: With a robust educational foundation, including post-doctoral work at prestigious institutions like MIT and Kyoto University, Prof. Pyo is well-equipped with advanced knowledge and research skills. Teaching and Leadership: His roles as a Professor and former Dean at Chung-Ang University, along with his exchange professorship at the University of Texas, Austin, underline his leadership in academia and his commitment to education. Industry Contributions: Prof. Pyo’s extensive experience in the semiconductor industry, including leadership positions at SK Hynix and MagnaChip Semiconductor, showcases his ability to bridge the gap between academic research and industrial application.

Achievements

Publications and Patents: With approximately 100 publications and 200 patents, Prof. Pyo has made significant contributions to scientific literature and technological innovation. His work has been widely cited, reflecting the impact and relevance of his research. Editorial Roles: Serving on editorial boards of journals like Electronic Materials Letter and Advanced Science, Engineering and Medicine, he has contributed to shaping the field’s research directions.

Selected Publications

Optimizing Nanocomposite Structures: His publication on enhancing charge storage in nanocomposites is a testament to his innovative research in energy materials. Manufacturing Techniques: Several of his patents and publications focus on advanced manufacturing techniques for semiconductor devices, indicating his practical contributions to improving technology.

Recognition and Memberships

Who’s Who Listings: Prof. Pyo’s inclusion in Who’s Who in the World highlights his global recognition as a leading researcher. Professional Memberships: His involvement with the Korea Research Council for Industrial Science and Technology and the System IC Foundry Research Group reflects his influence in advancing industrial science.

Conclusion

Prof. Sung Gyu Pyo’s extensive research in materials science, significant contributions to semiconductor technology, and influential roles in academia and industry make him a strong candidate for the “Best Researcher Award.” His innovative work and leadership have not only advanced scientific understanding but have also driven technological progress, making him highly deserving of this recognition.

Research focus

Dr. SG Pyo’s research primarily focuses on semiconductor devices, specifically in the development and enhancement of image sensors and metal wiring. His notable contributions include advancements in backside illuminated sensors, fabrication of electrocatalysts for water splitting, and innovations in photoelectrodes for perovskite solar cells. His work spans across multiple areas including materials science, nanotechnology, and surface science, making significant strides in both theoretical and applied aspects of semiconductor technology. Dr. Pyo’s research has been published in high-impact journals and patented, showcasing his expertise in enhancing device performance and efficiency.

🔬📸🌟🧪✨🔋

Publication top notes

Atomic layer etching applications in nano-semiconductor device fabrication

Heater block having catalyst spray means

Zn2SnO4-Based Photoelectrodes for Organolead Halide Perovskite Solar Cells

Method of forming a metal wiring in a semiconductor device

Backside illuminated image sensor

Fabrication and evaluation of nickel cobalt alloy electrocatalysts for alkaline water splitting

Development of a production-ready, back-illuminated CMOS image sensor with small pixels

Microstructural analysis of multilayered titanium aluminide sheets fabricated by hot rolling and heat treatment

Enhanced charge storage by optimization of pore structure in nanocomposite between ordered mesoporous carbon and nanosized WO3− x

Fabrication of multilayered titanium aluminide sheets by self-propagating high-temperature synthesis reaction using hot rolling and heat treatment

Ashraf Morsy | Materials Science Award | Best Researcher Award

Assist Prof Dr. Ashraf Morsy | Materials Science Award | Best Researcher Award

Assist Prof Dr. Ashraf Morsy, Faculty of Engineering, Pharos University, Alexandria, Egypt.

Dr. Ashraf Morsy, a distinguished membrane technology expert 🧪, serves as the Membrane Laboratory Supervisor at Pharos University, Egypt. With dual doctorates in Materials Science and Petrochemicals, he blends academic prowess with over two decades of laboratory experience. His research delves into water treatment, desalination, and polymer modifications, reflected in numerous publications and patents. Dr. Morsy’s leadership extends to mentoring M.Sc. and Ph.D. students, alongside active participation in international conferences. A member of prestigious scientific societies, including the Arab International of Materials Science, his work shapes sustainable solutions for water scarcity challenges. 🌊🔬

 

Publication Profile

Scopus

Education

Dr. Ashraf Morsy’s academic journey spans decades of dedication and expertise 🎓. Beginning with a Bachelor’s degree in Special Chemistry from Alexandria University in 1988, he continued to expand his knowledge with diplomas in Education and Material Science. His pursuit of excellence led to a Master’s degree in Materials Science in 2011 and a dual Doctorate, specializing in Materials Science and Petrochemicals. With a focus on polymer modifications and membrane fabrication for water treatment, Dr. Morsy’s extensive educational background empowers him to innovate sustainable solutions for addressing global water challenges, marking him as a leader in the field. 🌊🔬

 

Experience

Dr. Ashraf Morsy brings a wealth of expertise to the realm of chemical laboratories 🧪. Specializing in water treatment, chlorine, caustic soda production, and polymerization, his proficiency extends across various facets of chemistry. As a seasoned laboratory manager, he excels in overseeing operations and guiding the research endeavors of M.Sc. and Ph.D. students. Dr. Morsy’s adeptness isn’t confined to the lab; he is equally skilled in imparting knowledge. From organic chemistry to membrane technology, his teaching prowess encompasses a wide array of subjects, ensuring a holistic understanding of chemical processes. 🔬📚

Research Focus

Dr. Ashraf Morsy’s research focus primarily revolves around sustainable solutions for water treatment and desalination, marked by his significant contributions to membrane technology 🌊. Through innovative approaches, he explores the development of advanced materials such as cellulose acetate and nanocomposites extracted from natural sources like rice straw. His work spans various facets of membrane fabrication, including polymer modifications and the integration of environmentally friendly additives for enhanced performance. Dr. Morsy’s dedication to addressing water scarcity challenges is evident in his extensive publication record, which underscores his commitment to advancing sustainable practices in the field of chemical engineering. 🔬📑

 

Publication Top Notes 

  1. Utilizing a blend of expandable graphite and calcium/zinc stearate as a heat stabilizer environmentally friendly for polyvinyl chloride by Morsy et al. (2024) 🔄
  2. Cited by 9 articles, Improved anti-biofouling resistances using novel nanocelluloses/cellulose acetate extracted from rice straw based membranes for water desalination by Morsy et al. (2022) 📚
  3. Cited by 17 articles, Evaluation of the water quality and the eutrophication risk in Mediterranean sea area: A case study of the Port Said Harbour, Egypt by Morsy et al. (2022) 🌊
  4. Cited by 2 articles, Development of cellulose acetate membrane performance by carboxylate multiwalled carbon nanotubes by Morsy et al. (2022) 🧪
  5. Cited by 1 article, Energy Recovery from Spray Dryer Exhaust Air Using High-Temperature Heat Pump System by Morsy et al. (2022) 🔄
  6. Cited by 7 articles, Enhancing anti-scaling resistances of aromatic polyamide reverse osmosis membranes using a new natural materials inhibitor by Morsy et al. (2021) 🌿
  7. Cited by 18 articles, Anti-biofouling of 2-acrylamido-2-methylpropane sulfonic acid grafted cellulose acetate membranes used for water desalination by Morsy et al. (2020) 🔬
  8. Cited by 2 articles, Improvement of performance and antifouling properties of reverse osmosis membranes using green additive by Morsy et al. (2019) 🔄
  9. Cited by 19 articles, Reverse osmosis membranes for water desalination based on cellulose acetate extracted from Egyptian rice straw by Morsy et al. (2016) 🌾
  10. Cited by 18 articles, Grafted cellulose acetate reverse osmosis membrane using 2-acrylamido-2-methylpropanesulfonic acid for water desalination by Morsy et al. (2016) 🔬