SUK-WON HWANG | Materials Science | Best Researcher Award

SUK-WON HWANG | Materials Science | Best Researcher Award

Prof SUK-WON HWANG,Korea University,South Korea
Suk-Won Hwang, an innovator in bioelectronics, is renowned for his pioneering work in biodegradable and transient electronic systems. 🧪 His research focuses on developing flexible, stretchable, and implantable devices for biomedical applications. With a prolific publication record, Hwang’s contributions include biocompatible conductive polymers, wireless nerve stimulators, and soft electronics for neuromodulation. His multidisciplinary approach integrates materials science, engineering, and medicine to create bioresorbable electronics that dissolve harmlessly in the body, opening new avenues in healthcare. Hwang’s work underscores a commitment to sustainable, eco-friendly technologies with profound implications for personalized medicine and human-machine interfaces.

Publication profile

Scopus

Education

Dr. Suk-Won Hwang is an esteemed academic with a strong foundation in materials science and engineering. He earned his Bachelor’s and Master’s degrees from Hanyang University in 2003 and 2005, respectively, where he delved into the intricacies of materials science. Building upon this knowledge, he pursued further studies at the University of Illinois at Urbana-Champaign, culminating in a Ph.D. in Materials Science and Engineering in 2013. Throughout his academic journey, Dr. Hwang has demonstrated a commitment to advancing the field through rigorous research and scholarly contributions. His educational background equips him with a comprehensive understanding of materials and their applications, positioning him as a valuable asset to both academia and industry.

 

Research focus

This person’s research focus seems to lie at the intersection of bioresorbable materials and electronic systems, with a particular emphasis on stretchable and transient electronics. They delve into various applications, such as wireless nerve stimulation, surgical meshes with monitoring capabilities and drug delivery, as well as antibacterial and radiative cooling systems. Their work also explores innovative designs inspired by nature, like electric eel-inspired electrocytes for power systems. Through their studies, they aim to develop highly efficient and sustainable solutions for soft, biodegradable electronics. 🌱🔬📱

Publication top notes

Correction to: Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems (Nano-Micro Letters,

Soft, Long-Lived, Bioresorbable Electronic Surgical Mesh with Wireless Pressure Monitor and On-Demand Drug Delivery

Stretchable and biodegradable composite films for disposable, antibacterial, radiative cooling system

Electric Eel-Inspired Soft Electrocytes for Solid-State Power Systems

Materials and Designs for Extremely Efficient Encapsulation of Soft, Biodegradable Electronics

Ultra-stretchable and biodegradable elastomers for soft, transient electronics

Photothermal Lithography for Realizing a Stretchable Multilayer Electronic Circuit Using a Laser