Danyu Xia | Supramolecular Chemistry Award | Best Researcher Award

Assoc Prof Dr. Danyu Xia | Supramolecular Chemistry Award | Best Researcher Award

Assoc Prof Dr. Danyu Xia, Shanxi University, China

Dr. Danyu Xia, Associate Professor at Shanxi University, specializes in supramolecular chemistry with a focus on self-assembling materials. With a PhD from Zhejiang University and international research experience from UNSW, his work spans responsive polymers, macrocycles, and liquid crystals. Dr. Xia has authored numerous publications and presented widely, including at prestigious conferences like ISMSC. His recent research explores novel applications of pillararenes in polymer networks and drug delivery systems. πŸ§ͺ Passionate about advancing molecular sciences, he continues to mentor students and collaborate on cutting-edge research in China.

 

Publication profile

Scopus

Education and Academic Background

Danyu Xia completed her PhD in Chemistry from Zhejiang University, China, under the supervision of Prof. Feihe Huang. Her doctoral research focused on responsive self-assemblies based on macrocycles, with a particular interest in their applications in various fields.

Professional Experience

Currently serving as an Associate Professor at Shanxi University, Danyu Xia supervises multiple students at different academic levels. Her research spans the realm of supramolecular self-assembly, supramolecular polymeric materials, and macrocycle-based host-guest interactions.

Research Focus

Danyu Xia’s research focuses on the development and application of supramolecular polymeric materials, particularly using pillararene-based architectures. Her work explores the synthesis and characterization of these materials, emphasizing their ability to form intricate networks through host-guest interactions. These supramolecular polymers exhibit promising applications, including efficient removal of dyes from water systems, highlighting their potential in environmental remediation. Xia’s investigations contribute significantly to the field of supramolecular chemistry, advancing our understanding of how macrocycle-based structures can be tailored for practical uses in water purification and other technological applications. 🌍

 

Publication Top Notes