Viviany Geraldo | Nanotechnology | Best Researcher Award

Prof. Dr. Viviany Geraldo | Nanotechnology | Best Researcher Award

Prof. Dr. Viviany Geraldo, Federal University of Itajubá, Brazil

Prof. Dr. Viviany Geraldo holds a PhD in Materials Science and Engineering from the University of São Paulo (USP), Brazil, with a sandwich period at Université Paris-Sud, France. She has a robust academic background, including a Master’s degree in Materials Science (USP) and a Bachelor’s in Physics from São Paulo State University (UNESP). Specializing in condensed matter physics, her research focuses on SnO₂ thin films, Sb doping, carbon nanotubes, and nanomaterial synthesis. 🧪

Publication Profile

Scopus

Academic Profile

Prof. Dr. Viviany Geraldo holds a PhD in Materials Science and Engineering from the University of São Paulo (USP, 2005), with a sandwich program at Université de Paris-Sud 🇧🇷🇫🇷. Her research, supervised by Prof. Dr. Valérie Briois and Prof. Luís Vicente de Andrade Scalvi, explored Sb-doped SnO2 properties via sol-gel methods. She completed her Master’s (2001) on SnO2 thin films and doping effects and a Bachelor’s in Physics (1998) at UNESP. She pursued postdoctoral studies at UFMG (2009–2011), focusing on new materials development. Prof. Geraldo is an expert in sol-gel processes, thin films, and Sb-doped SnO2. 🔬📜

 

Professional Career

Prof. Dr. Viviany Geraldo has an extensive teaching and research career. Since 2014, she has been a professor at FUNCESI, teaching Transport Phenomena and Physics courses. At UNIMINAS and Kennedy faculties, she lectured on Electromagnetism and Mechanics, totaling 180 hours per semester. As a postdoctoral researcher at UFMG (2009–2011), she contributed to electromagnetism studies and mobility engineering. Her early career includes synchrotron radiation research in Paris and Hamburg 🌍. Currently, she serves as a public servant, coordinating final engineering projects and contributing to academic councils. Prof. Geraldo specializes in innovative teaching for engineering and physics. 📚⚙️

 

Research Focus

Prof. Dr. Viviany Geraldo’s research focuses on the environmental applications of carbon nanotubes (CNTs) and their integration into construction materials and biomedical applications. Her work includes sustainable synthesis of CNTs using iron ore tailings 🌱, functionalization of CNTs for enhanced biocompatibility 🧬, and their application in reinforcing mortar and Portland-composite cement 🏗️. She also explores the toxicity and environmental impact of CNTs in biological systems 🐟 and evaluates innovative materials for regenerative medicine 💊. Her interdisciplinary research bridges nanotechnology, environmental sustainability, and material science, advancing green technologies and practical applications in construction and healthcare. 🌍✨

 

Publication Top Notes

  • 🌍 “Environmental and technical assessment on the application of slate waste in Portland-composite cement CEM II” – 2024 | Cited: 0
  • 🧪 “CNT grown in situ from iron ore tailings: simple dispersion and environmental sustainability” – 2023 | Cited: 0
  • 🏗️ “Synthesis and application of carbon nanotubes grown directly on pozzolanic clay” – 2023 | Cited: 0
  • 📚 “Carbon nanotube research developments: Published scientific documents and patents, synthesis, and production” (Book Chapter) – 2022 | Cited: 1
  • 🔬 “High-yield synthesis of carbon nanotubes in-situ on iron ore tailing” – 2021 | Cited: 6
  • 🧱 “Synthesis of carbon nanotubes on sand grains for mortar reinforcement” – 2020 | Cited: 12
  • 💉 “Carboxylated versus bisphosphonate SWCNT: Functionalization effects on the biocompatibility and in vivo behaviors in tumor-bearing mice” – 2019 | Cited: 11
  • 🐟 “Neurotoxicity in zebrafish exposed to carbon nanotubes: Effects on neurotransmitters levels and antioxidant system” – 2019 | Cited: 47
  • “High-yield synthesis of bundles of double- and triple-walled carbon nanotubes on aluminum flakes” – 2018 | Cited: 13
  • ❤️ “Evaluation of cardiovascular toxicity of carbon nanotubes functionalized with sodium hyaluronate in oral regenerative medicine” – 2014 | Cited: 14

Sameh Okasha | Nanotechnology | Best Researcher Award

Dr. Sameh Okasha | Nanotechnology | Best Researcher Award

Research associate, University of glasgow, United Kingdom

Sameh Okasha is a dedicated Research Associate at the University of Glasgow, UK, with extensive experience in semiconductor processing and nanotechnology. His work spans both academia and industry, where he has contributed to cutting-edge research in multi-modal electron microscopy and semiconductor film development. Sameh is passionate about advancing material science and engineering, with a focus on innovative process solutions and quality assurance in high-tech environments.

Publication Profile

Strengths for the Award:

  1. Extensive Research Experience: Sameh Okasha has a strong background in research, particularly in material science and nanotechnology, with experience in cutting-edge research themes such as multi-modal electron microscopy, atomic layer deposition, and the study of nanostructure materials. His role as a Research Associate at the University of Glasgow, along with previous research internships at prestigious institutions like Kyushu University, Technical University of Denmark, and Ludwig-Maximillian-Universität München, highlights his dedication and contribution to the field.
  2. Technical Expertise: His work experience in both academic and industrial settings, including his role as a Process Engineer at ASM Japan, showcases his ability to apply research findings to practical problems in semiconductor processing. His involvement in generating innovative process solutions and submitting several intellectual properties (IPs) further underlines his technical acumen and innovative mindset.
  3. Recognition and Awards: Okasha has received multiple awards for his research and contributions, including the Inventor’s Award from ASM Japan and several appreciation certificates from international conferences and his previous employers. These accolades reflect his excellence and recognition in the scientific community.
  4. Educational Background: With a Ph.D. in Molecular and Material Science from Kyushu University and multiple research internships at top universities, Okasha’s educational background is robust and well-aligned with the award’s criteria.
  5. Leadership and Training: His experience in leading quality control teams, developing training materials, and managing laboratory operations in his previous roles adds a layer of leadership and mentorship to his profile, demonstrating his ability to contribute to the broader scientific community.

Areas for Improvement:

  1. Publication Record: While his experience and awards are commendable, the provided CV does not list specific publications, which are typically a crucial factor in evaluating research contributions. A stronger emphasis on peer-reviewed publications in high-impact journals would further solidify his candidacy for the award.
  2. Broader Impact and Collaboration: While Okasha has worked in various international settings, expanding his collaborative efforts across more diverse scientific fields or interdisciplinary projects could enhance the overall impact of his research.
  3. Communication and Outreach: Engaging in more scientific communication, such as presenting at international conferences, writing review papers, or participating in outreach activities, could improve his visibility and influence in the research community.

 

Education 🎓

Sameh Okasha earned his Ph.D. in Molecular and Material Science from Kyushu University, Japan (2018-2021), where he researched atomic layer deposition of nanoscale aluminum superconducting materials. He also holds a Master’s degree in the same field from Kyushu University (2016-2018), focusing on the fabrication, synthesis, and catalytic activity of metal oxide nanowires decorated with nanoparticles. His academic journey began with a Bachelor’s degree in Chemical Engineering from Cairo University, Egypt (2007-2012), where he excelled with distinction.

Experience 💼

Sameh’s career includes roles as a Research Associate at the University of Glasgow, where he explores multi-modal electron microscopy of 3D racetrack memory. He previously worked as a Process Engineer II at ASM Japan (2021-2023), where he developed semiconductor SiO2 films and addressed critical process challenges. Earlier in his career, he served as a Quality Control & Quality Assurance Engineer at Gulsan Holding, Egypt, where he played a pivotal role in establishing a state-of-the-art laboratory and led a team of technicians in ensuring quality control for Procter & Gamble.

Research Focus 🔬

Sameh’s research focuses on material science, particularly in semiconductor processing and nanotechnology. He has worked extensively on the atomic layer deposition of superconducting materials, the synthesis of metal oxide nanowires, and advanced imaging techniques like electron microscopy. His work aims to solve critical problems in semiconductor device fabrication and optimize processes for high-quality film deposition.

Awards and Honours 🏆

Sameh has received several awards for his contributions to material science and engineering. He was honored with the Inventor’s Award by ASM Japan in May 2023. He has also received multiple appreciation certificates from Kyushu University for his participation in international conferences. Notably, he won the Nano Initiative Munich (NIM) student research award during his research internship at Ludwig-Maximillian’s-Universitat Munchen, Germany, in 2017.

Publication Top Notes 📚

  • “Characterization of alane (AlH₃) thin films grown by atomic layer deposition for hydrogen storage applications” | Applied Surface Science | 2024-11
  • “Atomic layer deposition of self-assembled aluminum nanoparticles using dimethylethylamine alane as precursor and trimethylaluminum as an initiator” | Journal of Nanoparticle Research | 2022-12
  • “Atomic layer deposition of aluminum (111) thin film by dimethylethylaminealane precursor” | Thin Solid Films | 2021-08
  • “nZVI@TiO₂ Hetero-interface Activity for NO₃⁻ Removal as Water Remediation Application” | Conference Paper | 2018-10-18
  • “Hetero-interface of CeO₂ Nanoparticles Single Crystal On MgO Nanowires Surface” | Conference Paper | 2017-10-19

Conclusion:

Sameh Okasha is a highly qualified candidate for the Research for Best Researcher Award, with a solid foundation in material science, nanotechnology, and semiconductor processing. His technical expertise, international research experience, and recognition through awards make him a strong contender. However, to maximize his chances, it would be beneficial to highlight his publication record more prominently and to showcase broader collaborations and outreach activities. Overall, his profile is well-aligned with the award’s criteria, and with a few enhancements, he would be an excellent candidate for this prestigious recognition.