Kumar Mallem | Energy | Best Researcher Award

Dr. Kumar Mallem | Energy | Best Researcher Award

Dr. Kumar Mallem, Hong Kong University of Science and Technology, Hong Kong

Dr. Kumar Mallem is a researcher in electronic and computer engineering, specializing in quantum rod light-emitting diodes (QRLEDs) and advanced optoelectronic materials. He is pursuing a Ph.D. at the Hong Kong University of Science and Technology (HKUST), focusing on next-generation display and lighting applications. His research spans quantum dot and quantum rod LEDs, perovskite solar cells, and silicon-based photovoltaics. Dr. Mallem has extensive experience in device fabrication and characterization, with multiple high-impact publications and patents. Recognized with prestigious awards, including the Distinguished Paper Award at SID Display Week 2025, he continues to advance energy-efficient lighting technologies.

Publication Profile

Google Scholar

Education 🎓

Dr. Kumar Mallem is currently pursuing a Ph.D. in Electronic and Computer Engineering at HKUST (2020–2025) under Prof. Abhishek Kumar Srivastava, focusing on quantum rod light-emitting diodes for future display applications. He earned an M.Tech. in Electronics and Communication Engineering from Jawaharlal Nehru Technological University, Kakinada (2012–2014), conducting research on HfO₂/Ge stacks for MOS devices at IIT Bombay under Prof. Saurabh Lodha. His B.Tech. in the same field was completed at AGCIT, JNTU Kakinada (2007–2011). His educational background integrates semiconductor device engineering, optoelectronics, and materials science, equipping him with expertise in advanced display and photovoltaic technologies.

Experience 🏆

Dr. Kumar Mallem has significant research experience in optoelectronics and semiconductor devices. Since 2020, he has been a Ph.D. researcher at HKUST, developing quantum rod LEDs and optimizing their efficiency. From 2015 to 2019, he worked as a research assistant at Sungkyunkwan University, South Korea, under Prof. Junsin Yi, specializing in silicon solar cells, thin-film transistors (TFTs), and MOS devices. His hands-on expertise includes device fabrication, nanomaterials assembly, and advanced characterization techniques. His work contributes to energy-efficient display technologies and next-generation solid-state lighting.

Awards & Honors 🏅

Dr. Kumar Mallem has received several prestigious recognitions, including the Distinguished Paper Award at SID Display Week 2025 for his work on highly efficient QRLEDs. He was awarded the Hong Kong PhD Fellowship Scheme (2020–2025) for academic excellence. He also won the Excellent Paper Award at the Asia-Pacific Forum on Renewable Energy in 2018. His contributions to optoelectronic devices and energy-efficient lighting technologies have earned him international recognition, reflecting his impact in advancing quantum dot and nanomaterial-based displays.

Research Focus 🔬

Dr. Kumar Mallem specializes in quantum rod and quantum dot light-emitting diodes, perovskite LEDs, silicon solar cells, and advanced optoelectronic materials. His research aims to enhance device efficiency, suppress charge leakage, and improve external quantum efficiency for high-performance display and lighting technologies. He works extensively with solution-processed nanomaterials, carrier injection engineering, and interface optimization to develop next-generation optoelectronic devices. His contributions to solid-state lighting and energy-efficient display technologies push the boundaries of modern photonic applications.

Publication Top Notes

  • Quantum‐Rod On‐Chip LEDs for Display Backlights with Efficacy of 149 lm W−1 |  Advanced Materials | 55 | 2021
  • Molybdenum oxide: A superior hole extraction layer for Si solar cells | Materials Research Bulletin | 53 | 2019
  • Influence of small size pyramid texturing on Ag-screen printed Si solar cells | Materials Science in Semiconductor Processing | 45 | 2018
  • Control of size and distribution of silicon quantum dots for solar cells | Renewable Energy | 33 | 2019
  • Ultralow roll‐off quantum dot LEDs using engineered carrier injection layer | Advanced Materials | 30 | 2023
  • Ambient annealing influence on MoOx layer for carrier-selective contact solar cells | Materials Science in Semiconductor Processing | 29 | 2019
  • MoOx work function & interface analysis for hole-selective Si heterojunction solar cells | Applied Surface Science | 24 | 2021
  • Solution-processed red, green, and blue quantum rod LEDs | ACS Applied Materials & Interfaces | 22 | 2022
  • High-efficiency crystalline silicon solar cells: A review  | 19 | 2019
  • Light scattering properties of multi-textured AZO films for Si thin film solar cells |  Applied Surface Science | 19 | 2018

Mahdi Gandomzadeh | Renewable Energy | Young Scientist Award

Mr. Mahdi Gandomzadeh | Renewable Energy | Young Scientist Award

Mr. Mahdi Gandomzadeh at Shahid Behshti University, Iran

Mahdi Gandomzadeh is a dedicated Renewable Energy Engineer specializing in solar photovoltaics, hybrid systems, and power grid optimization. With a strong background in electrical engineering, he has contributed significantly to research, innovation, and academia. His work focuses on enhancing solar energy efficiency, mitigating dust impact, and advancing intelligent maintenance strategies. As a research assistant, he collaborates on various projects to improve energy sustainability. A recipient of prestigious awards, he actively engages in academic mentorship, startups, and technical advancements. His expertise extends to modeling, simulation, and energy storage systems, making him a promising researcher in renewable energy.

Publication Profile

Google Scholar

Educational Background🎓

Mahdi Gandomzadeh is pursuing a Ph.D. in Renewable Energy Engineering (2022-2026) at Shahid Beheshti University, Tehran, with a focus on solar photovoltaic system performance. He completed his M.Sc. in Renewable Energy Engineering (2017-2020) from the same university, where he researched uncertainty modeling in Iran’s power grid. His B.Sc. in Electrical Engineering – Power (2013-2017) was from Ferdowsi University, Mashhad, where he evaluated power factor and voltage stability in coal industries. His strong academic foundation has paved the way for groundbreaking research in renewable energy systems and grid integration.

Professional Background🏆

Mahdi has gained diverse research and industry experience. Since 2017, he has been an Electrical & Energy Engineer at Shahid Beheshti Renewable Energies Engineering Labs. He has worked as a Research Assistant in Solar Photovoltaic and Solar Thermal Teams, contributing to advanced solar energy solutions. His industrial expertise includes being a Hybrid Energy Systems Expert at Tehran’s Municipality (2018) and a Senior Researcher at Tabas Parvadeh Coal Company (2016-2017). Additionally, he has been an educational assistant in various electrical and renewable energy courses, shaping the next generation of energy engineers.

Awards and Honors🏅

Mahdi has received prestigious recognitions for his contributions to renewable energy. In 2024, he won the Best Student Award from the National Foundation of Iranian Elites. His innovative work placed him among the top ten teams in the Smart City Start-up Weekend by Tehran’s Municipality (2018). He also secured first place in the 9th Start-up Trigger at Sharif University of Technology (2018) in the energy sector. These accolades highlight his dedication, leadership, and impactful contributions to renewable energy research, innovation, and technology advancement.

Research Focus🔬

Mahdi’s research revolves around solar energy optimization, hybrid power systems, and grid integration. He specializes in solar photovoltaic efficiency, focusing on dust mitigation, uncertainty modeling, and intelligent cleaning strategies. His work includes machine learning applications in solar forecasting, energy storage solutions, and smart grid advancements. He has published numerous peer-reviewed papers on solar panel maintenance, energy management, and multi-criteria decision-making strategies. His contributions aim to improve renewable energy sustainability by addressing environmental challenges and enhancing energy reliability in distributed and grid-connected systems.

Publication Top Notes

1️⃣ Enhancing Photovoltaic Efficiency: An In-depth Systematic Review and Critical Analysis of Dust Monitoring, Mitigation, and Cleaning Techniques 📖
Year: 2025 | Journal: Applied Energy 388, 125668

2️⃣ Dust Mitigation Methods and Multi-Criteria Decision-Making Cleaning Strategies for Photovoltaic Systems: Advances, Challenges, and Future Directions 🌞
Year: 2025  | Journal: Energy Strategy Reviews 57, 101629

3️⃣ Revolutionizing Solar Panel Maintenance in Photovoltaic Systems: Reviewing Intelligent UAV Solutions for Efficient Dust Mitigation and Perspectives 🚁
Year: 2024

4️⃣ Harnessing Machine Learning with Advanced Linear Regression Models to Forecast PV System 🤖
Year: 2024

Conclusion

Mahdi Gandomzadeh is a distinguished young researcher in renewable energy, specializing in solar photovoltaic efficiency, dust mitigation, and hybrid energy systems. With a Ph.D. in Renewable Energy Engineering and multiple high-impact publications in journals like Applied Energy and Energy Strategy Reviews, his work contributes significantly to advancing solar energy technologies. His expertise spans grid integration, uncertainty modeling, and advanced simulation tools. Recognized with the Best Student Award by the National Foundation of Iranian Elites (2024), he has also excelled in academic teaching and innovation. His achievements make him a strong candidate for the Research for Young Scientist Award.

 

Roonak Daghigh | Solar Energy | Best Researcher Award

Assoc. Prof. Dr. Roonak Daghigh | Solar Energy | Best Researcher Award

Associate Professor at University of Kurdistan, Iran

Assoc. Prof. Dr. Roonak Daghigh is a distinguished researcher and academic in Mechanical Engineering at the University of Kurdistan, Iran. She holds a Ph.D. in Mechanical Engineering-Energy Conversion from the National University of Malaysia (UKM), with a focus on photovoltaic thermal heat pumps. She has served as Dean of the Faculty of Engineering and held key leadership roles at UOK. Recognized among the Top 2% scientists by Stanford University (2021-2024), her expertise spans energy studies, renewable energy, solar thermal systems, and HVAC. Dr. Daghigh has authored 65+ peer-reviewed articles with 2049 citations, an h-index of 25, and an i10-index of 38. She is an active reviewer for high-impact journals and has received multiple international awards.

Publication Profile

Google Scholar

Education 🎓

Dr. Daghigh earned her Ph.D. in Mechanical Engineering-Energy Conversion from the National University of Malaysia (UKM) in 2011, specializing in photovoltaic thermal heat pumps for water heating, drying, and cooling. She completed her M.Sc. in Mechanical Engineering at University Putra Malaysia (UPM) in 2008, focusing on air exchange effectiveness in thermal comfort. Her B.Sc. in Chemical Engineering – Process Design of Oil Industries from Iran University of Science and Technology (IUST) involved research on rust protection systems for buried pipelines using sacrificial anodes. She conducted part of her Ph.D. research at the Solar Energy Research Institute (SERI) in Malaysia.

Experience 👩‍🏫

Dr. Daghigh has been an Associate Professor at the University of Kurdistan since 2017, previously serving as an Assistant Professor (2013-2017). She held leadership roles, including Dean of the Faculty of Engineering (2022-2025), Deputy of Research (2018-2022), and Head of the Technology Incubation Centre (2015-2018). Before academia, she was an advisor at the Institute of Standards & Industrial Research of Iran (2011-2013). She is an editorial board member, keynote speaker, and active participant in technical committees for national and international events.

Awards and Honors 🏆

Dr. Daghigh has been recognized as a Top 2% scientist by Stanford University (2021-2024) and the Islamic World Science Citation Center (2024). She was named Top Department Researcher in 2014, 2015, 2021, and 2023. She received the Excellence in Reviewing Award from Elsevier and multiple medals at international innovation exhibitions in Malaysia, including gold at ITEX 2009. Her work has won best paper awards, including at the WSEAS Renewable Energy Sources Conference in Spain.

Research Focus 🔬

Dr. Daghigh specializes in energy studies, with a strong focus on renewable energy technologies, including solar energy conversion, fuel cells, and HVAC systems. Her research covers photovoltaic thermal systems, solar thermal applications, indoor air quality, and clean room technology. She has contributed significantly to applied energy solutions for heating, ventilation, and air conditioning. Her research integrates sustainability with advanced thermal management techniques.

Publication Top Notes

📗 Advances in liquid based photovoltaic/thermal (PV/T) collectors – R Daghigh, MH Ruslan, K Sopian | Renewable and Sustainable Energy Reviews | 232 citations | 2011

🌞 Review of solar assisted heat pump drying systems for agricultural and marine products – R Daghigh, MH Ruslan, MY Sulaiman, K Sopian | Renewable and Sustainable Energy Reviews | 176 citations | 2010

🔥 Theoretical and experimental analysis of thermal performance of a solar water heating system with evacuated tube heat pipe collector – R Daghigh, A Shafieian | Applied Thermal Engineering | 147 citations | 2016

🏢 Hybrid photovoltaic thermal (PV/T) air and water based solar collectors suitable for building integrated applications – A Ibrahim, GL Jin, R Daghigh, MHM Salleh, MY Othman, MH Ruslan, … | American Journal of Environmental Sciences | 117 citations | 2009

🔳 Evaluation of single-pass photovoltaic-thermal air collector with rectangle tunnel absorber – GL Jin, A Ibrahim, YK Chean, R Daghigh, H Ruslan, S Mat, MY Othman, … | American Journal of Applied Sciences | 110 citations | 2010

🌍 Assessing the thermal comfort and ventilation in Malaysia and the surrounding regions – R Daghigh | Renewable and Sustainable Energy Reviews | 107 citations | 2015

🔋 Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors – R Daghigh, A Ibrahim, GL Jin, MH Ruslan, K Sopian | Energy Conversion and Management | 107 citations | 2011

☀️ An experimental study of a heat pipe evacuated tube solar dryer with heat recovery system – R Daghigh, A Shafieian | Renewable Energy | 90 citations | 2016

🔄 A multistate investigation of a solar dryer coupled with photovoltaic thermal collector and evacuated tube collector – R Daghigh, R Shahidian, H Oramipoor | Solar Energy | 72 citations | 2020

🤖 Techno-economic estimation of a non-cover box solar still with thermoelectric and antiseptic nanofluid using machine learning models – S Nazari, M Najafzadeh, R Daghigh | Applied Thermal Engineering | 62 citations | 2022

🚗 Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles – M Fayyazi, P Sardar, SI Thomas, R Daghigh, A Jamali, T Esch, H Kemper, … | Sustainability | 59 citations | 2023

🏠 Ventilation parameters and thermal comfort of naturally and mechanically ventilated offices – R Daghigh, NM Adam, BB Sahari | Indoor and Built Environment | 56 citations | 2009

❄️ Effective design, theoretical and experimental assessment of a solar thermoelectric cooling-heating system – R Daghigh, Y Khaledian | Solar Energy | 53 citations | 2018

🔄 Energy-exergy analysis of a multipurpose evacuated tube heat pipe solar water heating-drying system – R Daghigh, A Shafieian | Experimental Thermal and Fluid Science | 51 citations | 2016

💧 Techno-enviro-exergo-economic and water hygiene assessment of non-cover box solar still employing parabolic dish concentrator and thermoelectric peltier effect – S Nazari, R Daghigh | Process Safety and Environmental Protection | 44 citations | 2022

⚙️ Improving the performance of heat pipe embedded evacuated tube collector with nanofluids and auxiliary gas system – R Daghigh, P Zandi | Renewable Energy | 43 citations | 2019

♨️ Experimental analysis of heat transfer in spiral coils using nanofluids and coil geometry change in a solar system – R Daghigh, Z Pooya | Applied Thermal Engineering | 41 citations | 2018

 

Hongwei Qu | Wind Turbines | Best Researcher Award

Dr. Hongwei Qu | Wind Turbines | Best Researcher Award

Professor at northeast electric power university, China

Dr. Hongwei Qu is a Professor at Northeast Electric Power University, specializing in new energy, photovoltaic modules, and wind turbines. He leads the Jilin University-Enterprise Joint Technology Innovation Laboratory, focusing on solar panel efficiency, dust accumulation diagnosis, and wind turbine optimization. He has secured multiple research grants, published 20+ academic papers (SCI/EI-indexed), and holds six patents. His industry collaborations have resulted in cost-saving innovations worth over 20 million yuan. A recipient of the Jilin Provincial Science and Technology Progress Award, Dr. Qu is dedicated to advancing renewable energy solutions. ⚡📡🔍

 

Publication Profile

Scopus

Academic and Professional Background

Dr. Hongwei Qu, Ph.D., is an Associate Professor and Master’s Supervisor at the School of Energy and Power Engineering, Northeast Electric Power University. He leads the Jilin University-Enterprise Joint Technology Innovation Laboratory for New Energy Industry, focusing on renewable energy and energy storage. His research covers solar photovoltaic efficiency, dust accumulation diagnosis, hot spot and hidden crack EL detection, wind turbine blade wake analysis, and intelligent operation and maintenance of wind turbines. Dr. Qu’s work advances sustainable energy solutions, enhancing the efficiency and durability of solar and wind energy systems. ⚡🔍🌞

🚀 Research & Innovations

Dr. Hongwei Qu has made remarkable contributions to renewable energy research. He has participated in two projects under the National Natural Science Foundation of China Youth Fund and received the Second Prize of Jilin Provincial Science and Technology Progress 🏆. He has led multiple projects, including 2 by Jilin Science and Technology Department, 2 by Jilin Education Department, and 2 by Jilin Science and Technology Bureau, along with 20+ horizontal research projects. His work includes 20 academic papers 📄, 10+ indexed in SCI & EI, 6 invention patents, 9 software copyrights, and 1 textbook 📚, driving technological advancements in energy innovation. ⚡🌍

🌞🔬 Research Focus

Dr. Hongwei Qu’s research revolves around photovoltaic (PV) efficiency, dust accumulation effects, and advanced coatings for energy applications. His work covers dust deposition impact on PV output ⚡, localized shadowing effects, and fault diagnosis using probabilistic neural networks 🤖. He also explores temperature-dependent PV performance, optimal cleaning cycles for solar panels, and optical transmission models for dusty modules. His expertise extends to superhydrophobic PTFE coatings 🏭, anti-scale polydopamine coatings, and PV-PCM systems under varying tilt angles, wind conditions, and ambient temperatures 🌬️. His findings enhance renewable energy efficiency, sustainability, and smart PV maintenance. 🌍🔋

Publication Top Notes

🔹 Qu, H., Zhao, H., Wang, W., Zhang, J. (2025). Experimental study on the losses of dusty PV modules considering irradiance levels and tilt angles. Energy Reports. Cited by: 0 📄⚡

🔹 Guo, S., Deng, X., Guo, T., Li, X., Tian, J. (2025). Optimization of biomass torrefaction densification process parameters: Impact on hydrogen-rich syngas generation in the gasification process. Biomass and Bioenergy. Cited by: 0 🌱🔋

🔹 Guo, S., Gan, J., Yang, L., Li, X., Zhao, D. (2025). Simulation and mechanistic exploration of the mid to late-stage hydrothermal carbonization process in biomass. Process Safety and Environmental Protection. Cited by: 0 🔥🌍

Conclusion

Dr. Hongwei Qu is a highly suitable candidate for the Best Researcher Award due to his extensive contributions to renewable energy research, technological innovations, and industry collaborations. His work in solar photovoltaic efficiency, energy storage, and wind turbine optimization demonstrates a strong impact on both academia and industry. While his citation index and editorial appointments could be improved, his patents, funded projects, and cost-saving solutions position him as a leading researcher in the field of energy and power engineering.

Jianmin Li | Solar cell | Best Researcher Award

Assoc Prof Dr. Jianmin Li | Solar cell | Best Researcher Award

Assoc Prof Dr. Jianmin Li, Wuhan University, China

Assoc. Prof. Dr. Jianmin Li 🎓🔬 is an accomplished academic at Wuhan University, specializing in thin-film solar cells since February 2023. He previously served as an associate research fellow at the same institution and completed his postdoctoral fellowship at The Chinese University of Hong Kong. His research focuses on CIGS and antimony-based thin-film materials, achieving significant breakthroughs in solar cell efficiency. Dr. Li has published extensively, including high-impact articles in Energy & Environmental Science and Advanced Materials, and holds multiple patents. He is also a member of the China Renewable Energy Society and serves as a Topic Editor for Energies magazine. 🌞📚

Publication profile

Scopus

Orcid

Google Scholar

Education

Assoc. Prof. Dr. Jianmin Li is an esteemed academic at Wuhan University, where he has been an associate professor in the College of Physical Sciences and Technology since February 2023, focusing on thin-film solar cells. His academic journey includes roles as an associate research fellow and postdoctoral fellow at The Chinese University of Hong Kong, where he specialized in the same field. He earned his PhD in material physics and chemistry from the University of Science and Technology of China. With a strong background in electronic science and technology, Dr. Li is committed to advancing solar energy research. 🌱📚

 

Professional Background

Assoc. Prof. Dr. Jianmin Li is an accomplished associate professor and master tutor at the School of Physical Science and Technology at Wuhan University. As a member of the China Renewable Energy Society, he specializes in the research of inorganic thin-film materials and solar cells, particularly CIGS and antimony-based materials. His recent breakthroughs in the field have set new records for efficiency, notably achieving 10.7% for Sb₂(S, Se)₃ solar cells in November 2021 and 10.57% for pure Se Sb₂Se₃ batteries in October 2022. 📈🌿

Research Contributions

Dr. Li has presided over and contributed to numerous projects, including funding from the National Natural Science Foundation of China and the Hubei Natural Science Foundation. His research output is impressive, with over 70 published papers in prestigious journals such as Energy & Environmental Science, Advanced Materials, and Nano Energy. Additionally, he has applied for seven Chinese patents, with three already authorized. 📝🔍

Publication Top Notes

  • A fast chemical approach towards Sb₂S₃ film with a large grain size for high-performance planar heterojunction solar cells 📝 (Cited by: 172, 2017)
  • Regulating Energy Band Alignment via Alkaline Metal Fluoride Assisted Solution Post‐Treatment Enabling Sb₂(S, Se)₃ Solar Cells with 10.7% Efficiency 📝 (Cited by: 152, 2022)
  • Regulating Deposition Kinetics via A Novel Additive-assisted Chemical Bath Deposition Technology Enables 10.57%-efficient Sb₂Se₃ Solar Cells 📝 (Cited by: 119, 2022)
  • A Novel Multi-sulfur Source Collaborative Chemical Bath Deposition Technology Enables 8%-efficiency Sb₂S₃ Planar Solar Cells 📝 (Cited by: 110, 2022)
  • Selenium‐graded Sb₂(S₁−ₓSeₓ)₃ for planar heterojunction solar cell delivering a certified power conversion efficiency of 5.71% 📝 (Cited by: 95, 2017)
  • Cu₂SnS₃ solar cells fabricated by chemical bath deposition–annealing of SnS/Cu stacked layers 📝 (Cited by: 73, 2016)
  • Enhancing photocurrent of Cu(In, Ga)Se₂ solar cells with actively controlled Ga grading in the absorber layer 📝 (Cited by: 52, 2019)
  • Highly efficient wide-band-gap perovskite solar cells fabricated by sequential deposition method 📝 (Cited by: 43, 2021)
  • Zinc-based Electron Transport Materials for Over 9.6%-Efficient S-rich Sb₂(S, Se)₃ Solar Cells 📝 (Cited by: 43, 2021)
  • Highly oriented GeSe thin film: self-assembly growth via the sandwiching post-annealing treatment and its solar cell performance 📝 (Cited by: 43, 2019)

Conclusion

Dr. Jianmin Li’s extensive research contributions, significant achievements in solar cell technology, high publication record, and active role in academia and professional societies, he is indeed a strong candidate for the Best Researcher Award. His work not only advances scientific knowledge but also addresses critical issues in renewable energy.