Theany To | Materials Science | Best Researcher Award

Dr. Theany To | Materials Science | Best Researcher Award 

Postdoc fellow, at Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) – UMR 6251, F-35000 Rennes, France.

Theany To is a dedicated researcher in glass mechanics, currently serving as a Marie-Curie Bienvenüe Post-doc at the Institute of Physics of Rennes (IPR), France (2023–2025). With a strong background in mechanical properties of glass, fracture toughness, and composite materials, Theany has made significant contributions to the field of materials science. He has collaborated with leading international researchers and industry partners, investigating the behavior of oxide glasses, silicate glasses, and novel glass-ceramic composites. Apart from research, he actively mentors students and participates in outreach activities, fostering scientific curiosity. Fluent in English, French, Danish, and Khmer, he enjoys engaging in football, volleyball, and scientific vulgarization. His enthusiasm for investigation and cooperation drives his passion for advancing the understanding of glass materials. 🏆🔬

Professional Profile

Scopus

ORCID

Google Scholar

Education 🎓

  • Ph.D. in Physics (Glass Mechanics), University of Rennes 1, France (2015–2019)
    Thesis: “Mechanical properties of innovated glasses and composite glasses – Cracking, Fracture Toughness, and Strength”

    • Developed insights into glass fracture mechanisms and composite structures.

    • Won a regional public award in a science communication contest.

  • Master’s Degree in Mechanical and Engineering Sciences, INSA Rennes, France (2014–2015)

    • Ranked 2nd out of 38 students in theory and 3rd in applications.

    • Specialized in material behavior under stress and fracture mechanics.

  • Bachelor’s Degree in Civil Engineering, Institute of Technology of Cambodia (2009–2014)

    • Focused on structural mechanics and tunnel construction.

    • Conducted research on cut-and-cover tunnel design.

Experience 🏢🔬

  • Marie-Curie Bienvenüe Post-doc, IPR, France (2023–2025)

    • Investigating mechanical properties of advanced glasses.

    • Supervising graduate students and collaborating on international projects.

  • Postdoctoral Researcher, IPGP, France (2022)

    • Explored mixed alkaline silicate glasses and mechanical behavior.

    • Published multiple high-impact journal articles.

  • Researcher, Aalborg University, Denmark (2019–2022)

    • Supervised 4 Master’s and multiple Ph.D. students.

    • Led projects on oxide glasses, crack-resistant materials, and phase separation.

  • Lecturer, University of Rennes 1, France (2017–2018)

    • Taught Mechanical Behavior of Materials to Master’s students.

    • Conducted practical solid mechanics courses for undergraduates.

Research Interests 🔍

  • Glass Fracture and Toughness: Investigating how glasses break under stress and methods to enhance durability.

  • Oxide Glasses & Composites: Exploring materials like lithium aluminoborate, galliumborate, and phosphosilicate glasses.

  • High-Pressure Glass Mechanics: Studying how glass properties change under extreme conditions.

  • Industrial Glass Applications: Collaborating with companies to develop stronger, more resilient glass materials.

  • Experimental and Theoretical Modeling: Combining experimental methods with computational simulations for advanced material analysis.

Awards & Honors 🏆

  • Regional Public & Internet Award (2017) – 🏅 “My Thesis in 3 Minutes” (French Science Communication Contest).

  • Marie-Curie Bienvenüe Postdoctoral Fellowship (2023–2025) – 🌍 Prestigious European postdoctoral research grant.

  • 2nd Place in Master’s Program (2015) – 🎓 Ranked among top students at INSA Rennes.

  • Multiple Research Grants & Collaboration Awards – 📜 Recognition for contributions to international glass mechanics research.

Top Noted Publications 📚🔗

Below are some of Theany To’s notable publications with links to full texts:

  • “Thermal and mechanical properties of Mg–Al–Si–O–N glasses with up to 6.2 at.% nitrogen”
    Authors: Theany To, et al.
    Journal: Journal of the American Ceramic Society, 2025.
    Summary: This study investigates the thermal and mechanical properties of magnesium-aluminum-silicon oxynitride (Mg–Al–Si–O–N) glasses containing up to 6.2 atomic percent nitrogen. The research aims to understand how nitrogen incorporation influences the structure and properties of these glasses. While the specific details of this study are not available in the provided sources, related research has shown that increasing aluminum content in similar glass systems leads to higher glass transition and crystallization temperatures, as well as increased viscosity. These changes are attributed to the progressive polymerization of the silicate network due to the glass-forming role of Al₂O₃.mostwiedzy.pl+1KFUPM+1KFUPM+1mostwiedzy.pl+1

  • “Fracture behavior of brittle particulate composites”
    Authors: T. Lacondemine, Theany To, et al.
    Journal: Materialia, 2024.
    Summary: This paper examines the fracture behavior of brittle matrix composites containing particulate reinforcements. Although specific details are not available, earlier studies have explored similar systems. For instance, research on glass matrices with nickel spheres investigated how the inclusion of metal particles affects fracture energy and crack propagation. The findings indicated that the presence of these particles can lead to local crack blunting, thereby increasing the material’s fracture energy.SpringerLinkSpringerLinkSpringerLink

  • “Mechanical and Electrochemical Properties of Lithium Aluminoborate Glasses”
    Authors: Theany To, et al.
    Journal: Glass Europe, 2024.
    Summary: This research focuses on lithium aluminoborate glasses, analyzing their mechanical strength and electrochemical behavior. The study aims to elucidate the relationship between the glass composition and its performance in applications such as solid-state batteries.

  • “Crystallization and mechanical properties of a barium titanosilicate glass”
    Authors: P. Mezeix, Theany To, et al.
    Journal: Journal of Materials Science, 2024.
    Summary: This paper investigates the crystallization behavior and mechanical properties of barium titanosilicate glass. The research explores how controlled crystallization impacts the material’s hardness and fracture toughness, providing insights into the development of glass-ceramic materials with tailored properties.

  • “Comparing the effects of Ga₂O₃ and Al₂O₃ on sodium borate glasses”
    Authors: Theany To, et al.
    Journal: Journal of Non-Crystalline Solids, 2023.
    Summary: This study compares the influence of gallium oxide (Ga₂O₃) and aluminum oxide (Al₂O₃) additives on the structure and properties of sodium borate glasses. The research aims to determine how these oxides affect factors such as thermal stability, hardness, and chemical durability, contributing to the understanding of modifier effects in glass science.

Conclusion

Theany To is a highly accomplished researcher with outstanding contributions to glass mechanics, extensive academic mentorship, and a strong collaborative network. With further engagement in grant leadership and industrial applications, they would be an excellent candidate for a Best Researcher Award.

Ms. Kowsalya M | Sustainable Concrete Award | Best Scholar Award

Ms. Kowsalya M | Sustainable Concrete Award | Best Scholar Award

Research Scholar, SRM Institute of Science and Technology, India

Ms. Kowsalya is a dedicated civil engineer with a strong academic background and a passion for research. She has completed her M.E. in Structural Engineering with a remarkable CGPA and is currently pursuing a Ph.D. in Civil Engineering. Her research interests include concrete technology, structural optimization, and sustainable construction materials. Ms. Kowsalya has demonstrated her expertise in various engineering software and has practical experience in technical assistance and structural design. She has received several awards for her academic and research achievements, including Best Paper Awards and recognition for her outstanding performance in college.

Publication Profile:

Education:

Ms. Kowsalya is currently pursuing her Ph.D. in Civil Engineering at SRM Institute of Science & Technology, Kattankulathur. She completed her M.E. in Structural Engineering with a remarkable CGPA of 9.51 from SRM Valliammai Engineering College, Kattankallathur. Prior to that, she obtained her B.E. in Civil Engineering with an impressive CGPA of 8.55 from Tagore Engineering College, Rathinamangalam, Chennai. Ms. Kowsalya completed her HSC with a score of 79% from Kendriya Vidyalaya No 1 AFS Tambaram, Chennai, and her SSLC with a CGPA of 8.6 from the same institution.

Experience:

During her time at M/s. Hitech Civil Engineering Services (M) Pvt. Ltd., from December 2018 to September 2019, Ms. Kowsalya provided technical assistance in structural designing and detailing. She also gained valuable experience through training at various esteemed organizations. As a PG Project Student at CSIR – SERC, Tharamani, she further honed her skills. Additionally, she underwent training at GRM Constructions Pvt Ltd, the Indian Metrological Department, and the Chennai Port Trust, enhancing her understanding of the industry and its practices.

Academic Projects:

Ms. Kowsalya has been actively involved in several academic projects that demonstrate her research prowess and practical skills. Currently, she is researching concrete technology, specifically focusing on fine aggregate replacement using Fly ash Cenosphere. During her postgraduate studies, she conducted an experimental project on the performance of buckling-prevented thin-walled members under compression at CSIR – SERC. She also conducted an analytical study on Castellated web beams with optimized openings. In her undergraduate years, she worked on an experimental project using Flymecrete columns for stabilizing soft soil and a design project on the “Design of Railway Truss Viaduct.” These projects showcase her commitment to advancing knowledge in civil engineering and her ability to tackle diverse challenges in the field.

Technical Skills 🛠️:

Ms. Kowsalya possesses a strong proficiency in a variety of engineering software, including ANSYS, ABAQUS, STAAD Pro, and AutoCAD. She is also adept at using ETABS, SAP2000, SAFE, REVIT, and MS Project at an intermediate level, demonstrating a well-rounded skill set in structural analysis and design.

Professional Membership 🤝:

Ms. Kowsalya is an Associate Member of the Institution of Engineers, a testament to her commitment to professional development and engagement within the engineering community. Her membership, which began in 2023, is registered under the membership number AM3092537.

Awards and Achievements:

Ms. Kowsalya has garnered several accolades throughout her academic and professional journey, reflecting her dedication and excellence in the field of civil engineering. She was honored with the Best Paper Award at the International Conference on MAHSA International Sustainable Infrastructure Technology and Environment 2023 (Mi-SITE23) held at MAHSA University, Malaysia. Additionally, she received the Best Paper Award at the National Conference on Material Sustainability (MSCE 2021) organized by SRM Institute of Science and Technology, Kattankulathur. Her academic achievements include being ranked as the Gold Medalist in ME Structural Engineering for the batch 2019-2021. Ms. Kowsalya is also a Gate Qualified candidate (2021-2023) and was certified as the Topper of the College in BE Civil Engineering for the batch 2014-2018. She received the Certification of Academic Excellence from Tagore Engineering College in 2016 and achieved a commendable rank of AIR 941 in the Engineering Olympiad Exam.

Publications:

  1. Assessment of bond behavior in fly ash cenosphere concrete using plain and deformed rebars
    • Authors: Not provided
    • Year: 2024
    • Journal: Structural Concrete
  2. Shape optimization of hanging structure using the concept of Biomimics
    • Authors: Not provided
    • Year: 2023
    • Journal: Materials Today: Proceedings
  3. Study on Mechanical and Microstructural Properties of Concrete with Fly Ash Cenosphere as Fine Aggregate—A Sustainable Approach
    • Authors: Kowsalya M
    • Year: 2022
    • Journal: Buildings
  4. A review on fly ash cenosphere as a solid waste in concrete application
    • Authors: Not provided
    • Year: 2022
    • Journal: Materials Today: Proceedings