Rocio Redon | Chemistry Award | Women Researcher Award

Prof Dr. Rocio Redon | Chemistry Award | Women Researcher Award

Prof Dr. Rocio Redon, Universidad Nacional Autónoma, Mexico

Publication profile

Academic Background 🎓

Prof. Dr. Rocio Redon has an extensive academic background, showcasing a robust foundation in Chemistry. She obtained her Doctorate in Chemical Sciences (Inorganic Chemistry) from the Universidad Nacional Autónoma de México (UNAM) in 2002, with a thesis on dynamic studies of fluoro-sulfur-containing ligands in Pd(II) compounds. Her doctoral research included multiple international stays at prestigious institutions such as the University of Hawaii, the University of Oxford, and the University of Essex, where she gained expertise in organometallic synthesis and NMR studies. This solid academic foundation provided her with the skills necessary for advanced research in inorganic chemistry.

Postdoctoral and Sabbatical Experience 🔬

Prof. Dr. Redon has completed significant postdoctoral research at the Centro de Ciencias Aplicadas y Desarrollo Tecnológico (UNAM) from 2003 to 2004, where she worked on developing 1D fullerene structures in nanostructured templates. Additionally, she has undertaken sabbaticals at McGill University and the Universidad Autónoma del Estado de Morelos, focusing on the synthesis of multifunctional polymers and the interaction of dendrimer-type macromolecules with commercial drugs. These experiences have enhanced her research profile, particularly in applied and synthetic chemistry.

Academic Positions and Current Appointments 📚

Prof. Dr. Redon has held various academic positions, including a Visiting Professorship at the Universidad Autónoma del Estado de Morelos and McGill University. She has been a Full-Time Researcher at the Centro de Ciencias Aplicadas y Desarrollo Tecnológico, UNAM, since 2004, and currently holds the position of “Investigador Titular B” at the Instituto de Ciencias Aplicadas y Tecnología, UNAM. Her role as a National Researcher (Level I) underscores her ongoing contributions to the scientific community in Mexico and beyond.

Research Fields and Subfields 🔍

Her primary research interests lie in Inorganic Chemistry, particularly in coordination and organometallic compounds, catalysis, and the synthesis of macromolecules for controlled drug release. Her work extends to nanostructured materials, focusing on the synthesis and characterization of zerovalent platinum group nanoparticles, metal oxide nanoparticles, and their interaction with multifunctional polymers. This interdisciplinary approach positions her research at the cutting edge of material science and nanotechnology.

Research Lines and Contributions 🧪

Prof. Dr. Redon’s research lines include the synthesis of multifunctional ‘Miktoarm’ polymers for controlled drug release, the development of polymer-nanoparticle materials for bactericidal applications, and the creation of nanostructured materials for additive manufacturing. Her work on homogeneous catalytic reactions using nanosystems as catalysts has significant implications for both the pharmaceutical and materials science industries, showcasing her innovative approach to applied chemistry.

Publication Top Notes

  • “Highly efficient and regioselective production of trisubstituted alkenes through heck couplings catalyzed by a palladium phosphinito PCP pincer complex” 🧪 – Cited by 245, 2000
  • “High yield olefination of a wide scope of aryl chlorides catalyzed by the phosphinito palladium PCP pincer complex:[PdCl {C6H3 (OPPri2) 2-2, 6}]” 💎 – Cited by 242, 2000
  • “One-step synthesis of Mn3O4 nanoparticles: Structural and magnetic study” ⚛️ – Cited by 200, 2005
  • “Dehydrogenation of alkanes catalyzed by an iridium phosphinito PCP pincer complex” 🔬 – Cited by 172, 2004
  • “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy” 🔭 – Cited by 152, 2009
  • “Selective dehydrogenation of alcohols and diols catalyzed by a dihydrido iridium PCP pincer complex” 🌟 – Cited by 142, 2001
  • “Enantioselective synthesis of platinum group metal complexes with the chiral PCP pincer ligand R, R-{C6H4-2, 6-(CH2P PhBut) 2}. The crystal structure of R, R-PdCl {C6H3-2, 6 …”* 💠 – Cited by 122, 2002
  • “Bonding modes in palladium (II) enolates: consequences for dynamic behavior and reactivity” 🔄 – Cited by 108, 1999
  • “Contact angle studies on anodic porous alumina” 📏 – Cited by 87, 2005
  • “Highly efficient and regioselective couplings of aryl halides to olefins catalyzed by a palladium complex with a hybrid phosphorus–sulfur ligand” 🔧 – Cited by 58, 2002
  • “Pd catalyzed Heck reaction with the catalytic system [Pd (Ph2PC6H4-2-(CH2NMe2))(SRF) 2]: Examination of the electronic effects of fluorinated thiolates” ⚙️ – Cited by 37, 2005
  • “[1, 1′-Bis (diphenylphosphino) ferrocene] palladium (II) complexes with fluorinated benzenethiolate ligands: examination of the electronic effects in the solid state, solution …” 🧰 – Cited by 37, 2004
  • “Solventless synthesis of ruthenium nanoparticles” 💧 – Cited by 33, 2015
  • “Contact angle studies on anodic porous alumina” 🌐 – Cited by 32, 2006
  • “Synthesis of [SnPh2 (SRF) 2] SRF=− SC6F4-4-H,− SC6F5: Reactivity towards group 10 transition metal complexes” ⚗️ – Cited by 31, 2007
  • “Aerobic synthesis of palladium nanoparticles” 🌿 – Cited by 27, 2011
  • “Allyl–palladium compounds with fluorinated benzenethiolate ligands. X-ray crystal structure of [(η3-C3H5) Pd (μ-SC6H4F-4) 2Pd (η3-C3H5)]” 📐 – Cited by 25, 2001
  • “Miktoarm star polymer based multifunctional traceable nanocarriers for efficient delivery of poorly water soluble pharmacological agents” 🧬 – Cited by 24, 2014

Conclusion 🏆

Considering Prof. Dr. Rocio Redon’s extensive academic background, significant postdoctoral and sabbatical experiences, ongoing research contributions, and her recognized position in the scientific community, she is a strong candidate for the Research for Women Researcher Award. Her innovative research, particularly in the fields of nanotechnology and drug delivery systems, demonstrates her potential to make substantial impacts in both academic and practical applications.