Željko Jaćimović | Inorganic | Best Researcher Award

Prof. Željko Jaćimović | Inorganic | Best Researcher Award

Prof. Željko Jaćimović, Faculty of Metallurgy and Technology, Montenegro

Prof. Željko Jaćimović appears to be a strong candidate for the Research for Best Researcher Award based on his extensive and impactful contributions to the field. Here are some key points to consider:

Publication profile

Scopus

Research Focus and Impact

Prof. Jaćimović’s research primarily revolves around transition metal complexes with pyrazole-based ligands. His work covers various aspects including:

Synthesis and Characterization: Prof. Jaćimović has synthesized and characterized numerous transition metal complexes with pyrazole derivatives, contributing to the understanding of their structural and thermal properties.

Crystal Structure Analysis: He has conducted detailed crystallographic studies, providing valuable insights into the crystal structures of various metal complexes.

Thermal Decomposition Studies: His research includes the thermal decomposition of metal complexes, which is critical for understanding their stability and potential applications.

Publications

  • Bigović, M., Kaludjerović, M., Shova, S., Tomić, Z.D., Jaćimović, Ž.K. (2024). Crystal structure of 1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene]thiocarbonohydrazide dimethyl sulfoxide monosolvate, C17H18N4O2S·C2H6OS. Zeitschrift für Kristallographie – New Crystal Structures, 239(5), 941–943. 🧪
  • Radnović, N.D., Štetin, N., Radanović, M.M., Jaćimović, Ž.K., Barta Holló, B. (2024). Two Isomers of a Novel Ag(I) Complex with Pyrazole-Type Ligand—Synthesis, Structural, Thermal, and Antioxidative Characterization. Inorganics, 12(1), 4. 💧
  • Bošković, N., Jaćimović, Z., Bajt, O. (2023). Microplastic pollution in rivers of the Adriatic Sea basin in Montenegro: Impact on pollution of the Montenegrin coastline. Science of the Total Environment, 905, 167206. 🌊
  • Kočović, D., Mugoša, S., Shova, S., Tomić, Z.D., Jaćimović, I.K. (2023). Crystal structure of 3-(4-bromophenyl)-5-methyl-1H-pyrazole, C10H9BrN2. Zeitschrift für Kristallographie – New Crystal Structures, 238(5), 863–865. 🔬
  • Ognjanović, M., Jaćimović, Ž., Kosović-Perutović, M., Stanković, D.M., Antić, B. (2023). Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity. Nanomaterials, 13(5), 870. 🌟
  • Stanković, M., Popova, M., Mazaj, M., Tušar, N.N., Logar, N.Z. (2022). Utilisation of waste Cu-, Mn- and Fe-loaded zeolites generated after wastewater treatment as catalysts for air treatment. Frontiers in Chemistry, 10, 1039716. ♻️
  • Ognjanović, M., Stanković, D.M., Jaćimović, Ž.K., Musić, S., Antić, B. (2022). Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate. Electroanalysis, 34(9), 1431–1440. 🧪
  • Zaimović, M.Š., Kosović Perutović, M., Jelušić, G., Radović, A., Jaćimović, Ž. (2022). The inhibitory effect of some pyrazole ligands and their Cu(II) complexes on the growth of Escherichia coli, Klebsiella–Enterobacter spp., and Staphylococcus aureus. Frontiers in Pharmacology, 13, 921157. 🦠
  • Holló, B.B., Radanović, M.M., Rodić, M.V., Jaćimović, Ž.K., Vojinović Ješić, L.S. (2022). Synthesis, Physicochemical, Thermal and Antioxidative Properties of Zn(II) Coordination Compounds with Pyrazole-Type Ligand. Inorganics, 10(2), 20. 💎
  • Ognjanović, M., Stanković, D.M., Jaćimović, Ž.K., Dojčinović, B., Antić, B. (2021). The effect of surface-modifier of magnetite nanoparticles on electrochemical detection of dopamine and heating efficiency in magnetic hyperthermia. Journal of Alloys and Compounds, 884, 161075. 🧲

Conclusion

Prof. Željko Jaćimović’s research contributions are significant, reflecting both depth and breadth in his field. His extensive list of publications in high-impact journals and his focus on complex and diverse aspects of metal-ligand chemistry highlight his qualifications for the Research for Best Researcher Award.

Heba Isawi | Chemistry Award | Best Researcher Award

Assoc Prof Dr. Heba Isawi | Chemistry Award | Best Researcher Award

Assoc Prof Dr. Heba Isawi, Desert Research Center, Egypt

Assoc. Prof. Dr. Heba’s profile showcases a strong educational and research background in chemistry, water treatment, and desalination technologies, making her a promising candidate for the Research for Best Researcher Award. Below is an evaluation of her qualifications based on various criteria:

Publication profile

Educational Background 🎓

Dr. Heba has a solid academic foundation, including a Ph.D. in Chemistry from Ain Shams University, Egypt, with a focus on synthesizing nano-enhanced reverse osmosis membranes for desalination. Her education is further enriched by international exposure, such as her time as a visiting scholar at the University of Waterloo in Canada, where she collaborated on advanced chemical engineering projects. This diverse academic background provides a robust foundation for innovative research in water treatment.

Professional Positions 💼

Throughout her career, Dr. Heba has held significant research positions at the Desert Research Center in Cairo, Egypt. As an Associate Professor, she has been actively involved in water desalination and hydrogeochemistry research, showcasing her dedication to addressing critical environmental challenges. Her experience as a visiting researcher at the University of Waterloo further highlights her commitment to international collaboration and knowledge exchange.

Research Contributions and Projects 🔬

Dr. Heba has participated in and led numerous research projects focused on water desalination, treatment, and groundwater management. Notable projects include the development of novel nanocomposite materials for water decontamination and the synthesis of innovative membranes for desalination. Her involvement in projects like creating digital water resource maps and integrating geophysical and hydrogeochemical methods demonstrates her comprehensive approach to solving water-related issues.

Awards and Recognition 🏆

Dr. Heba’s research excellence is recognized through prestigious awards, such as the U.S. INNOVATES-Egypt Joint Board on Scientific and Technological Cooperation grant, and funding from the Scientific Research and Developmental Funding (STDF) for her innovative work in desalination. These accolades reflect her capability to secure competitive research funding and her contributions to the scientific community.

Memberships and Collaborations 🤝

Her active participation in multiple collaborative projects, both nationally and internationally, signifies her role as a key contributor to the field of water treatment and desalination. Her involvement in diverse research initiatives, including those funded by the University of Tabuk and the Desert Research Center, underscores her ability to work effectively in multidisciplinary and multicultural research environments.

Publication Top Notes

  • Combined electrocoagulation/flotation technique and membrane desalination for textile wastewater reuse
    Isawi, H., Sadik, M.A., Nasr, F.A.
    Journal of Environmental Chemical Engineering, 2024, 12(5), 113661 📜
  • Design, fabrication, and performance assessment for green hydrogen production unit
    El-Aassar, A.-H.M., Mahmoud, F.E., elbakry, S., Sayed Alahl, A.A., Isawi, H.
    International Journal of Hydrogen Energy, 2024, 84, pp. 1050–1057 📜
  • Improvement of hybrid polyvinyl chloride/dapsone membrane using synthesized silver nanoparticles for the efficient removal of heavy metals, microorganisms, and phosphate and nitrate compounds from polluted water
    Moustafa, H., Shemis, M.A., Ahmed, E.M., Isawi, H.
    RSC Advances, 2024, 14(28), pp. 19680–19700 📜 (1 citation)
  • Preparation and Characterization of Nanocomposite Forward Osmosis Membranes for Water Desalination
    El-Sayed, F.M., Abo El-Fadl, M., Abo Aly, M.M., Isawi, H., Mohamed, E.A.Ali
    Egyptian Journal of Chemistry, 2024, 67(3), pp. 127–138 📜
  • Fabrication and characterization of magnetic cobalt ferrite intercalated chitosan grafted polyaniline ternary nanocomposites for removing some heavy metals simultaneously
    Abulyazied, D.E., Isawi, H., Ali, E.S., Rashad, M., Abd El Wahab, S.M.
    Journal of Molecular Liquids, 2024, 393, 123527 📜 (5 citations)
  • Retraction Note: Surface modification of thin film composite forward osmosis membrane using graphene nanosheets for water desalination
    El-Sayed, F.M., Ali, M.E.A., Isawi, H., Aly, M.M.A., El-Fadl, M.M.S.A.
    Scientific Reports, 2023, 13(1), 3404 📜
  • Advanced photocatalytic degradation of organic pollutants using magnetic nanostructured PVA membrane under solar irradiation
    Abomostafa, H.M., Isawi, H., Abulyazied, D.E., Abouhaswa, A.S.
    Surfaces and Interfaces, 2023, 42, 103402 📜 (5 citations)
  • Effective nanomembranes from chitosan/PVA blend decorated graphene oxide with gum rosin and silver nanoparticles for removal of heavy metals and microbes from water resources
    Ahmed, E.M., Isawi, H., Morsy, M., Hemida, M.H., Moustafa, H.
    Surfaces and Interfaces, 2023, 39, 102980 📜 (22 citations)
  • Preparation and characterization of rare earth element nanoparticles for enhanced photocatalytic degradation
    El-Kholy, R.A., Isawi, H., Zaghlool, E., Said, M.M., El-Aassar, A.-E.M.
    Environmental Science and Pollution Research, 2023, 30(26), pp. 69514–69532 📜 (6 citations)
  • Synthesis of graphene oxide-silver (GO-Ag) nanocomposite TFC RO membrane to enhance morphology and separation performances for groundwater desalination, (case study Marsa Alam area- Red Sea)
    Isawi, H.
    Chemical Engineering and Processing – Process Intensification, 2023, 187, 109343 📜 (13 citations)


Conclusion
🌟

Assoc. Prof. Dr. Heba’s extensive background in chemical engineering, her innovative research on desalination and water treatment technologies, and her numerous awards and collaborative projects make her a highly suitable candidate for the Research for Best Researcher Award. Her work not only advances scientific understanding but also provides practical solutions to critical water resource management challenges, demonstrating her significant impact in the field.

 

Taek Hyeon Kim | Organic Chemistry | Best Researcher Award

Prof Dr. Taek Hyeon Kim | Organic Chemistry | Best Researcher Award

Prof Dr. Taek Hyeon Kim, Chonnam National University, South Korea

Publication profile

Academic and Professional Background

Prof. Dr. Taek Hyeon Kim earned his Ph.D. from Korea Advanced Institute of Science and Technology (KAIST). He furthered his expertise through a postdoctoral course at UC Berkeley, USA, and worked with SK Innovation in Korea. He served as the Dean of the College of Engineering at Chonnam National University. Recognized as one of the top 30 researchers by the National Research Foundation of Korea in 2002, he has published over 100 SCI papers and holds 8 Korean patents. He is a member of the Korean Chemical Society, The Polymer Society of Korea, and The Korean Society of Industrial and Engineering Chemistry.

Areas of Research

Prof. Kim’s research focuses on organocatalysis, organic synthesis, and organic synthetic methods. He has extensively studied the development of novel synthetic methodologies and chiral auxiliaries, as well as solid-phase synthesis and molecular recognition. His work contributes significantly to asymmetric reactions and the broader field of organic chemistry.

Contributions

Prof. Kim’s 30-year research career has been marked by pioneering work in organic synthetic methodologies. His initial research aimed at creating novel organic phosphorus compounds for Wittig reactions. During his postdoctoral tenure in Henry Rapoport’s group, he worked on synthesizing important organic compounds using amino acids. At Chonnam National University, he has continued to advance research on chiral auxiliaries, solid-phase synthesis, molecular recognition, and organic catalysts for asymmetric reactions.

Publication Top Notes

  • Synthesis of ethyl 3-cyano-2-methylcinnamates and 3-cyano-2-methylcinnamonitriles from the Baylis–Hillman acetates
    YM Chung, JH Gong, TH Kim, JN Kim
    Tetrahedron Letters 42 (51), 9023-9026
    📚 852001
  • Melt grafting of maleimides having hindered phenol antioxidant onto low molecular weight polyethylene
    TH Kim, DR Oh
    Polymer degradation and stability 84 (3), 499-503
    📚 722004
  • Melt free‐radical grafting of hindered phenol antioxidant onto polyethylene
    TH Kim, HK Kim, DR Oh, MS Lee, KH Chae, S Kaang
    Journal of applied polymer science 77 (13), 2968-2973
    📚 692000
  • Synthesis of 1, 3-disubstituted naphthalenes from the Baylis–Hillman acetates with the aid of manganese (III) acetate
    YJ Im, KY Lee, TH Kim, JN Kim
    Tetrahedron letters 43 (26), 4675-4678
    📚 672002
  • Regioselective construction of polysubstituted pyridine ring from Baylis–Hillman adducts via sequential introduction of tosylamide, Michael reaction, aldol condensation, and …
    MJ Lee, TH Kim, JN Kim
    Tetrahedron letters 46 (50), 8799-8803
    📚 572005
  • Efficient synthesis of 2-methylaminothiazolines via Mitsunobu reaction of N-(2-hydroxyethyl)-N′-methyl-thioureas
    TH Kim, MH Cha
    Tetrahedron letters 40 (16), 3125-3128
    📚 541999
  • Regiocontrolled cyclization reaction of N-(2-hydroxyethyl) ureas by transfer of activation: one-pot synthesis of 2-imidazolidinones
    TH Kim, GJ Lee
    The Journal of organic chemistry 64 (8), 2941-2943
    📚 481999
  • Pd-Mediated synthesis of 7H-benzo [3, 4] azepino [1, 2-a] indole-6-carboxylic acid derivatives from indole-containing Baylis–Hillman adducts
    HS Lee, SH Kim, TH Kim, JN Kim
    Tetrahedron Letters 49 (11), 1773-1776
    📚 472008
  • Regioselective synthesis of polysubstituted phenol derivatives from Baylis–Hillman adducts via [3+ 3] annulation strategy
    SJ Kim, TH Kim, JN Kim
    Tetrahedron letters 47 (35), 6315-6319
    📚 452006
  • A mild cyclodesulfurization of N-(2-hydroxyethyl)-N′-phenylthioureas to 2-phenylamino-2-oxazolines using TsCl/NaOH
    TH Kim, N Lee, GJ Lee, JN Kim
    Tetrahedron 57 (33), 7137-7141
    📚 412001
  • A water‐developable negative photoresist based on the photocrosslinking of N‐phenylamide groups with reduced environmental impact
    KH Chae, GJ Sun, JK Kang, TH Kim
    Journal of applied polymer science 86 (5), 1172-1180
    📚 372002
  • S-Benzyl isothiouronium chloride as a recoverable organocatalyst for the direct reductive amination of aldehydes
    QPB Nguyen, TH Kim
    Tetrahedron letters 52 (39), 5004-5007
    📚 342011


Conclusion

Prof. Dr. Taek Hyeon Kim’s extensive experience, impactful research contributions, and significant academic achievements make him a strong candidate for the Research for Best Researcher Award. His innovative work in organic synthesis and catalytic methods aligns well with the award’s criteria, highlighting his excellence and influence in the field.

 

Dr. Abdulrazzaq Hammal | Applied chemistry | Best Researcher Award

Dr. Abdulrazzaq Hammal | Applied chemistry | Best Researcher Award

Dr. Abdulrazzaq Hammal, Aleppo university, Syria

Dr. Abdulrazzaq Hammal is a distinguished academic at Aleppo University, Syria, specializing in [specific field if known]. With a profound background in [relevant area], Dr. Hammal has significantly contributed to research and education in [specific field or topic]. His expertise and dedication to advancing knowledge have made a notable impact on both his students and the academic community.

Publication profile
Educational Background

Dr. Abdulrazzaq Hammal holds a robust academic background in Applied Chemistry from the University of Aleppo, Syria. He completed his Bachelor’s degree in 2008, followed by a Master’s degree in Applied Chemistry with a focus on Inorganic Industries in 2012. Dr. Hammal further advanced his expertise by earning a Ph.D. in Applied Chemistry, specializing in Inorganic Industries, in 2017. His educational journey underscores a deep commitment to the field and positions him as a knowledgeable expert in his area of specialization.

Scientific Contributions

Dr. Abdulrazzaq Hammal has made significant contributions to both academia and industry through his role as Supervisor of the scientific team for the Syrian Scientific Olympiad in Chemistry from 2016 to 2020. He has actively engaged in educational outreach by organizing several workshops at the Creativity and Skills Center at the University of Aleppo. These workshops covered a diverse range of topics, including ceramic membranes and their role in water treatment (2017), the concept and applications of nanotechnology (2018), biomedical ceramics and their uses (2019), and the application of nanotechnology in medicine (2020). His efforts highlight his dedication to advancing knowledge and fostering innovation in his field.

Scientific Awards

Dr. Abdulrazzaq Hammal has been recognized for his exceptional contributions to scientific research and innovation. He received the Best Invention Award at the Al-Basil Exhibition for Creativity and Innovation from the International Federation of Inventors in 2018. His research excellence was further acknowledged with the Best Research Award published in the Aleppo University Research Journal in the same year. Additionally, Dr. Hammal was honored with the Medal of an Initiating Researcher from the ARID platform in Malaysia in 2020, followed by the Medal of the Scientist Project in 2021 and the Medal of a Creative Researcher in 2022. These accolades underscore his impactful work and commitment to advancing his field.

Scientific Publications

  • Improving the specifications of Syrian raw phosphate by thermal treatment. 2011- Arabian Journal of
    Chemistry. KSA.
     Characterization and Determination the Optimal Conditions of Syrian Limestone, for Calcification and
    Extinguishing. Al-Mustansiriyah Journal of Science. Volume 30, Issue 1, 2019
     Using of Syrian Sand to Produce New Inorganic Ceramic Membranes. JKAU: Sci., Vol. 31.Number(1) pp: 39-
    50 (2019 A.D. / 1441 A.H.).
     Chemical Composition of essential oil and antibacterial Activity against some pathogenic bacteria of
    Citrus aurantium leaves extracts. JKAU: Sci., Vol. 32.Number(1) pp: 11-16 (2020 A.D. / 1441 A.H.)
     Treating Dental Wastewater Using Treated Syrian Dolomite and Ceramic Membranes. JKAU: Sci., Vol.
    32.Number(1) pp: 27-34 (2020 A.D. / 1441 A.H.).
     Isolation and Identification of Pathogenic Bacteria from Euphrates River. JKAU: Sci., Vol. 32.Number(2) pp:
    29-34 (2020 A.D. / 1441 A.H.).
     A New Medical Dressing With Silver Nanoparticles To Treat Diabetic Foot Patient. Al-Mustansiriyah Journal of
    Science. Volume 33, Issue 1, 2022.
     Preparing New Ceramic Membranes from Syrian Zeolite Coated with Silver Nanoparticles to Treatment Wells
    Water. Baghdad Science Journal. 2023.
     Treating Syrian sand and studying the possibility of using it to prepare ceramic membranes and studying
    some of its properties. Aleppo University Research Journal, Basic Science Series. 2014
     Preparing ceramic films from Syrian sand and studying some of their properties and effectiveness in treating
    laundry wastewater. Aleppo University Research Journal, Basic Science Series 2015
     Preparation of new ceramic membranes and study of their efficiency in micro-purification of drinking water.
    Aleppo University Research Journal Basic Science Series 2017
     Characterization of Syrian raw basalt and its use in preparing new inorganic membranes for microtreatment
    of drinking water. Aleppo University Research Journal Basic Science Series 2018
     Preparation of ceramic membranes for use in designing a mobile filter for drinking water treatment. Aleppo
    University Research Journal Basic Science Series 2019.
     Preparation of pure silicon from raw Syrian sand. Journal of Aleppo University Research Basic Science Series
    2023.
     Preparation of Nano-silica and Nano-silicone from Glass Wastes. Syrian Journal for Science and
    Innovation2023.

 

Ramin Javahershenas | Chemistry | Best Researcher Award

Ramin Javahershenas | Chemistry | Best Researcher Award

Dr Ramin Javahershenas, Urmia University, Iran

Publication profile

google scholar

Education and Academic Background 🎓

Dr. Ramin Javahershenas holds a Ph.D. in Organic Chemistry from Urmia University, Iran (2014-2017). He also completed his M.Sc. in Organic Chemistry at the same institution (1996-1999) and earned a B.Sc. in Applied Chemistry from Tabriz University, Iran (1989-1993). His academic journey reflects a strong foundation in organic chemistry, which has been pivotal in his research and professional career.

Professional Experience 💼

Dr. Javahershenas has extensive experience in both academia and industry. Since April 2000, he has been working full-time at Javaher Shimi Co., a chemicals and lab ware trading company in Iran. Previously, he served as the Supervisor of the X-ray Lab at Urmia Cement Company (1996-2001), where he was responsible for monitoring and improving production processes. He has also taught chemistry and related sciences in governmental and private schools and universities, demonstrating his commitment to education and knowledge dissemination.

Research Contributions and Publications 📚

Dr. Javahershenas has made significant contributions to organic chemistry, particularly in the synthesis of heterocyclic compounds via multicomponent reactions. His work is widely published in reputable journals, including Journal of Heterocyclic Chemistry, Heterocyclic Communications, Molecules, and RSC Advances. His research articles cover innovative synthetic methodologies, including green chemistry approaches, nanocatalysis, and the development of new organic compounds with potential applications in drug discovery.

Conferences and Seminars 🎤

Dr. Javahershenas has actively participated in various Iranian seminars on organic chemistry, presenting posters on topics such as the synthesis of aroyl [bis(4-hydroxycoumarin-3-yl)]methane derivatives and 1,4-dihyropyridine derivatives. His involvement in these events highlights his engagement with the scientific community and his dedication to advancing the field of organic chemistry.

Membership and Professional Affiliations 🏅

Dr. Javahershenas is a member of the Iranian Chemical Society, demonstrating his connection to the broader chemical research community in Iran. His membership further solidifies his standing as a committed and recognized professional in the field.

Technical Skills and Certifications 💻

Dr. Javahershenas possesses strong technical skills in Microsoft Office and Windows operating systems, certified by the International Computer Driving License (ICDL). His proficiency in software and computer applications is an asset in managing research data, analysis, and presentations.

Conclusion 🏆

Dr. Ramin Javahershenas is a highly accomplished chemist with a robust academic background, extensive research experience, and significant contributions to the field of organic chemistry. His work in developing innovative synthetic methodologies and his active participation in scientific conferences make him a strong candidate for the “Best Researcher Award.” His expertise, publications, and commitment to advancing chemical science underscore his suitability for this recognition.

Publication top notes

Recent developments in the synthesis of polysubstituted pyridines via multicomponent reactions using nanocatalysts

One-pot synthesis of 2-amino-4 H-chromene derivatives by MNPs@ Cu as an effective and reusable magnetic nanocatalyst

Nanomagnetic reusable catalysts in organic synthesis

A new synthesis of pyrrolo[3,2-d]pyrimidine derivatives by a one-pot, three-component reaction in the presence of L-proline as an organocatalyst

Recent advances in the multicomponent synthesis of heterocycles using tetronic acid

A surfactant directed microcrystalline cellulose/polyaniline composite with enhanced electrochemical properties

Nanomaterials: Catalysis in synthesis of highly substituted heterocycles

Recent Advances in Multicomponent Electro-Organic (Electrochemical) Synthesis of Heterocycles

A Green Synthesis of 7‐amino‐5‐(4‐aroyl)‐1,3‐dimethyl‐2,4‐dioxo‐1,2,3,4,5,8‐hexahydropyrido[2,3‐d]pyrimidine‐6‐carbonitrile Derivatives by a One‐pot Three …

Latest developments in coumarin-based anticancer agents: mechanism of action and structure–activity relationship studies

Sandeep Joshi | Inorganic Chemistry Award | Best Researcher Award

Mr. Sandeep Joshi | Inorganic Chemistry Award | Best Researcher Award

Mr. Sandeep Joshi, NIT uttarakhand, India

Based on Mr. Sandeep Joshi’s curriculum vitae, here’s an evaluation of his suitability for the “Research for Best Researcher Award”:

Publication profile

Google Scholar

Educational Background

Mr. Sandeep Joshi has a solid academic foundation with a B.Sc. in Chemistry, a B.Ed., and an M.Sc. in Chemistry. He is currently pursuing his Ph.D. coursework at the National Institute of Technology, Uttarakhand, where he has achieved a commendable CGPA of 9.00/10. His educational qualifications reflect a strong commitment to his field of study.

Research Work and Publications

Mr. Joshi is actively engaged in research related to the synthesis, structure, catalytic, and molecular detection studies of Metal-Organic Frameworks (MOFs) and metal complexes. His research work has resulted in notable publications in reputable journals, including:

  1. “Metal-free hydroarylation derived ferrocence-dihydrocoumarin as ultrasensitive dual-channel probe selectivity for picric acid” (Applied Organometallic Chemistry, 2023).
  2. “Thiazole-based metalloligands and their heteroleptic MOFs: Chromogenic and fluorometric detection of tryptophan and Z-L-phenylalanine” (Journal of Molecular Structure, 2024).

These publications indicate a high level of research proficiency and contribution to the field of chemistry.

Technical Skills and Training

Mr. Joshi possesses technical skills in LaTeX, OLEX, Mercury, Mestre Nova, ChemDraw, Mendeley, DFT, and Origin Pro. He has completed training in industrial summer training and National Service Scheme (NSS), which adds to his diverse skill set and practical experience.

Conferences and Fellowships

He has actively participated in and contributed to national conferences and international poster presentations, including the National Conference on Recent Advancement in Physical Sciences and the International Conference on Recent Trends in Chemical Sciences & Sustainable Energy. Mr. Joshi has also been awarded junior and senior research fellowships and a Junior Research Fellowship by the Council of Scientific & Industrial Research.

Achievements and Activities

Mr. Joshi has been involved in organizing conferences and has achieved recognition through various fellowships and certifications. His involvement in organizing national conferences and his contribution to research as a junior and senior research fellow showcase his dedication and leadership in his field.

Conclusion

Mr. Sandeep Joshi’s educational qualifications, research achievements, technical skills, and active participation in conferences and fellowships position him as a strong candidate for the “Research for Best Researcher Award.” His research work, particularly in the area of MOFs and metal complexes, coupled with his academic and technical background, underscores his potential for making significant contributions to the field.

This summary highlights Mr. Joshi’s qualifications and achievements, reflecting his suitability for the award.

 

 

 

 

 

 

 

Cheol-Hong Cheon | Organic Chemistry | Best Researcher Award

Prof Dr. Cheol-Hong Cheon | Organic Chemistry | Best Researcher Award

Prof Dr. Cheol-Hong Cheon, Korea University, South Korea

Prof. Dr. Cheol-Hong Cheon: A Candidate for the Best Researcher Award

Publication profile

Scopus

Academic Background

Prof. Dr. Cheol-Hong Cheon is a distinguished academic in the field of chemistry, with a robust educational foundation from Korea University and The University of Chicago. He earned his B.S. and M.S. in Chemistry from Korea University, followed by a Ph.D. in Chemistry from The University of Chicago, under the mentorship of Professor Hisashi Yamamoto.

Professional Experience

Dr. Cheon’s career is marked by significant academic and research positions. He served as a Post-Doctoral Research Fellow at the University of California, Berkeley, and later joined Korea University, advancing from Assistant Professor to full Professor. His tenure includes a visiting scholarship at the University of Illinois, Urbana-Champaign.

Awards and Recognitions

Dr. Cheon has received multiple prestigious awards, including the CHUNGAM POSCO Young Investigator Fellowship and several Asian Core Program Lectureship Awards from Taiwan, Thailand, and China. He was also honored with the Stone Tower Excellence in Teaching Award, highlighting his contributions to education and research.

Research Areas

Dr. Cheon’s research spans Total Synthesis, Asymmetric Synthesis, Umpolung Chemistry, and Heterocyclic Chemistry. His innovative approaches in these areas have led to significant advancements in organic chemistry.

Representative Publications

Dr. Cheon has authored numerous high-impact publications. Notable works include the asymmetric total synthesis of Iheyamine B and the total synthesis of Rucaparib, which was recognized as a highly downloaded paper and highlighted in Synfacts. His research has consistently contributed to the field, earning recognition and citations in leading journals.

Conclusion

Prof. Dr. Cheol-Hong Cheon’s extensive academic background, significant professional experience, numerous awards, and impactful research contributions make him a suitable candidate for the Best Researcher Award. His dedication to advancing the field of chemistry through innovative research and education underscores his qualification for this prestigious recognition.

 

 

 

 

 

 

 

Manijeh nematpour | organic chemistry | Best Researcher Award

Dr. Manijeh nematpour | organic chemistry | Best Researcher Award

Dr. Manijeh nematpour, Farhangian university, tehran, iran

Dr. Manijeh Nematpour, an accomplished academic, is an Assistant Professor at Farhangian University’s Department of Chemistry Education in Tehran, Iran. She holds a Postdoctoral degree in Pharmaceutical Chemistry from Shahid Beheshti University and completed her Ph.D. in Organic Chemistry at Tarbiat Modares University. Her research focuses on organic synthesis, particularly in heterocyclic and pharmaceutical chemistry. With a robust academic background spanning from Mazandaran University to her current role, Dr. Nematpour is recognized for her contributions to the field, evident in her publications and scholarly activities. 🎓🔬

 

Publication Profile

Scopus

Google Scholar

🎓 Education

Dr. Nematpour earned her Postdoctoral degree in Pharmaceutical Chemistry (2016-2020) from Shahid Beheshti University of Medical Sciences, Tehran, supervised by Sayyed Abass Tabataba’i. She completed her Ph.D. in Organic Chemistry (2011-2014) and M.Sc. in Organic Chemistry (2008-2010) at Tarbiat Modares University, Tehran, under the guidance of Issa Yavari. Her B.Sc. in Chemistry (2004-2008) was obtained from Mazandaran University, specializing in Pure Chemistry.

 

Research Focus

Dr. Manijeh Nematpour’s research primarily focuses on organic synthesis, particularly in the development of novel methodologies for creating functionalized heterocyclic compounds. Her work spans various aspects of pharmaceutical chemistry, including the synthesis of pyrazoles, pyrimidines, azet-2-imines, and other complex molecular structures using copper-catalyzed reactions and multicomponent reactions. These contributions are significant for their potential applications in drug discovery and development. Dr. Nematpour’s expertise lies in leveraging organic chemistry principles to design and synthesize compounds with potential pharmacological activities, contributing to advancements in medicinal chemistry. 🔬🧪

 

Publication Top Notes

  • Ph3P-mediated one-pot synthesis of functionalized 3,4-dihydro-2H-1,3-thiazines from N,N′-dialkylthioureas and activated acetylenes in water 📚 73 citations (2010)
  • Copper-catalyzed one-pot synthesis of tetrasubstituted pyrazoles from sulfonyl azides, terminal alkynes, and hydrazonoyl chlorides 📚 51 citations (2012)
  • Copper-catalyzed tandem synthesis of tetrasubstituted pyrimidines from alkynes, sulfonyl azides, trichloroacetonitrile, and tetramethylguanidine 📚 29 citations (2013)
  • Tandem synthesis of highly functionalized pyrazole derivatives from terminal alkynes, sulfonyl azides, diethyl azadicarboxylate, and sodium arylsulfinates 📚 29 citations (2012)
  • Synthesis of Functionalized Tetrahydro‐4‐oxoindeno[1,2‐b]pyrroles from Ninhydrin, Acetylenedicarboxylates, and Primary Amines 📚 29 citations (2010)
  • Copper-Catalyzed One-Pot Synthesis of Functionalized 1, 4-Dihydroazete Derivatives from Sulfonyl Azides, Terminal Alkynes, and Tetramethylguanidine 📚 26 citations (2012)
  • One-pot synthesis of 2, 6-diamino-4-sulfonamidopyrimidines from sulfonyl azides, terminal alkynes and cyanoguanidine 📚 26 citations (2012)
  • Design, synthesis and anti-diabetic activity of novel 1, 2, 3-triazole-5-carboximidamide derivatives as dipeptidyl peptidase-4 inhibitors 📚 22 citations (2020)
  • Copper-catalyzed tandem synthesis of highly functionalized bisamidines 📚 21 citations (2013)
  • A copper-catalyzed synthesis of functionalized quinazolines from isocyanides and aniline tri-and dichloroacetonitrile adducts through intramolecular C–H activation 📚 18 citations (2017)

Chryslaine Rodríguez-Tanty | Chemistry Award | Best Researcher Award

Mrs. Chryslaine Rodríguez-Tanty | Chemistry Award | Best Researcher Award

Mrs. Chryslaine Rodríguez-Tanty, Centro de Neurociencias de Cuba, Cuba

Mrs. Chryslaine Rodríguez-Tanty is a prominent researcher focused on Alzheimer’s disease and neurodegeneration. She is known for her work on Amylovis-201, a dual-target ligand that acts as an anti-amyloidogenic compound and a potent σ1 receptor agonist. Her research demonstrates Amylovis-201’s effectiveness in inhibiting Aβ peptide aggregation and its neuroprotective effects through σ1 receptor activation. Chryslaine’s contributions are pivotal in developing innovative therapies for neurodegenerative diseases. 🧠💊🔬

Publication profile

Scopus

Google Scholar

Research Focus

Chryslaine Rodríguez-Tanty is primarily focused on the development of therapeutic agents targeting neurodegenerative diseases and other conformational disorders. Her work includes the study of amyloid structures, drug discovery for Alzheimer’s disease, and the development of chemical chaperones. She has also contributed to research on polymorphic amyloid structures in diabetes and the synthesis of peptide-oligonucleotide hybrids. Chryslaine’s research spans organic chemistry, biochemistry, and pharmacology, aiming to create innovative treatments for complex diseases. 🧬🧠💊🔬

Publication Top Notes

  • Drug development in conformational diseases: A novel family of chemical chaperones that bind and stabilise several polymorphic amyloid structures – PLoS One 10 (9), e0135292, 2015 (Cited by: 30) 🧬💊
  • Diabetes Drug Discovery: hIAPP1–37 Polymorphic Amyloid Structures as Novel Therapeutic Targets – Molecules 23 (3), 686, 2018 (Cited by: 27) 🩺🍬
  • [18F] Amylovis as a Potential PET Probe for β-Amyloid Plaque: Synthesis, in Silico, in vitro and in vivo Evaluations – Current Radiopharmaceuticals 12 (1), 58-71, 2019 (Cited by: 17) 🧠🔬
  • Alternative Procedures for the Synthesis of Methionine‐Containing Peptide− Oligonucleotide Hybrids – European Journal of Organic Chemistry 2000 (13), 2495-2500, 2000 (Cited by: 16) 🧬🧪
  • A new naphthalene derivative with anti-amyloidogenic activity as potential therapeutic agent for Alzheimer’s disease – Bioorganic & Medicinal Chemistry 28 (20), 115700, 2020 (Cited by: 14) 🧠💊
  • Use of a chimeric synthetic peptide from the core p19 protein and the envelope gp46 glycoprotein in the immunodiagnosis of HTLV-II virus infection – Preparative Biochemistry and Biotechnology 33 (1), 29-38, 2003 (Cited by: 10) 🦠🧬
  • Introduction of an immunochemical label in a cytidine analogue – Nucleosides, Nucleotides & Nucleic Acids 14 (1-2), 219-228, 1995 (Cited by: 10) 🧪🔬
  • 2′, 3′-Didehydro-3′-deoxythymidine N-methyl-2-pyrrolidone solvate (D4T· NMPO) – Acta Crystallographica Section C: Crystal Structure Communications 56 (5), 2000 (Cited by: 9) 🔬🧬
  • Synthesis of 5-Methyl-2′-O-Deoxycytidine Analogs to Determine Monoclonal Antibody Specificity in the Recognition of the 6-(p-Bromobenzoylamino) Caproyl – Nucleosides & Nucleotides 16 (4), 455-467, 1997 (Cited by: 8) 🧪🔬
  • Identificación y caracterización in silico de la zona de interacción entre el péptido beta-amiloide y compuestos derivados del naftaleno – Revista CENIC. Ciencias Químicas 43, 2012 (Cited by: 7) 🧠🔍

Dinesh Kumar Chelike | Inorganic Chemistry | Best Researcher Award

Dr. Dinesh Kumar Chelike | Inorganic Chemistry | Best Researcher Award

Dr. Dinesh Kumar Chelike, Rungta College of Engineering and Technology Bhilai, India

Dr. Dinesh Kumar Chelike is an Assistant Professor of Chemistry at Rungta College of Engineering & Technology, Bhilai, India. With a Ph.D. in Chemistry from SRM Institute of Science and Technology, he specializes in developing non-isocyanate polyurethanes (NIPU) for drug delivery and battery applications, as well as fluorescent materials for metal ion sensing and hybrid inorganic-organic materials for optical/sensor applications. Dr. Chelike has held a Senior Research Associate position at Clearsynth R&D Lab and has contributed to over 11 peer-reviewed articles, 2 book chapters, and 1 patent. He has been awarded the RARE Award 2024 and the Young Research Award 2020. 🌟🔬📚

Publication profile

Google Scholar

Orcid

🎓 Education

Dr. Dinesh Kumar Chelike holds a PhD in Chemistry from SRM Institute of Science and Technology, Chennai (2022), with a focus on hybrid inorganic-organic molecules and non-isocyanate polyurethanes. He completed his MSc in Chemistry from Karunya Institute of Technology & Sciences, Coimbatore (2017), and a BSc in Chemistry from Kalayan P.G. College, Bhilai (2015).

👨‍🏫 Professional Experience

Currently an Assistant Professor in Chemistry at Rungta College of Engineering & Technology, Bhilai, Dr. Chelike has also served as a Senior Research Associate at Clearsynth R&D Lab, Secunderabad. He is a prolific researcher with a focus on sustainable materials and sensor applications.

🏆 Awards & Achievements

Dr. Chelike has received multiple accolades, including the RARE Award-2024 and the Young Research Award 2020 from the Institute of Scholar, Bangalore. He has a patent on sustainable non-isocyanate polyurethanes and has published extensively in high-impact journals.

 

Research Focus

DK Chelike is focused on the development of biodegradable and sustainable materials, particularly in the realm of polyurethanes and nanocomposites. 🌱 Their research includes optimizing biodegradable polyurethane foams for footwear to reduce waste, synthesizing isocyanate-free polyurethane films, and creating plant-derived iron oxide nanoparticles for environmental applications. Chelike’s work extends to the valorization of lignocellulosic biomass via fungal biodegradation and the formulation of non-isocyanate polyurethanes from vegetable oils. This research highlights a commitment to advancing eco-friendly materials with applications in reducing pollution, enhancing sustainability, and promoting green chemistry. 🌿🔬

Publication Top Notes

  • Biodegradable polyurethane foam as shoe insole to reduce footwear waste: Optimization by morphological physicochemical and mechanical properties 🥿🔬
    Applied Surface Science 499, 143966
    Cited by: 39 Year: 2020
  • Biodegradable polyurethanes foam and foam fullerenes nanocomposite strips by one-shot moulding: Physicochemical and mechanical properties 📏🧪
    Materials Science in Semiconductor Processing 112, 105018
    Cited by: 26 Year: 2020
  • Functionalized iron oxide nanoparticles conjugate of multi-anchored Schiff’s base inorganic heterocyclic pendant groups: Cytotoxicity studies ⚛️💊
    Applied Surface Science 501, 143963
    Cited by: 23 Year: 2020
  • Tunable yellow–green emitting cyclotriphosphazene appended phenothiazine hydrazone hybrid material: Synthesis, characterisation, photophysical and electrochemical studies 🌈🔋
    New Journal of Chemistry 44 (31), 13401-13414
    Cited by: 12 Year: 2020
  • Biodegradable isocyanate-free polyurethane films via a noncatalytic route: facile modified polycaprolactone triol and biobased diamine as precursors ♻️🧫
    RSC Advances 13 (1), 309-319
    Cited by: 4 Year: 2023
  • Catalyzed and Non‐catalyzed Synthetic Approaches to Obtain Isocyanate‐free Polyurethanes 🔬🧩
    ChemistrySelect 8 (26), e202300921
    Cited by: 2 Year: 2023
  • A recent review of the synthesis of plant-derived iron oxide nanoparticles for metal ion removal 🌿🧲
    Inorganic Chemistry Communications, 112611
    Cited by: — Year: 2024
  • Utilizing Fungal Biodegradation for Valorisation of Lignocellulosic Waste Biomass and Its Diverse Applications 🍄♻️
    Applied Research
    Cited by: — Year: 2024
  • Biorenewable vegetable oil based nonisocyanate polyurethanes and nanocomposites; formulation, characterisation, biodegradation, anticorrosion and antifouling coatings 🌾🧴
    New Journal of Chemistry 48 (12), 5173-5185
    Cited by: — Year: 2024
  • CYCLOPHOSPHAZENE BASED HYBRID INORGANIC-ORGANIC MOLECULES AND NON-ISOCYANATE POLYURETHANES FOR SUSTAINABILITY 🔄🌍
    SRM Institute of Science and Technology Chennai
    Cited by: — Year: 2022