Mohammad Divandari | Electronic Engineering | Best Researcher Award

Assist. Prof. Dr. Mohammad Divandari | Electronic Engineering | Best Researcher Award

Assist. Prof. Dr. Mohammad Divandari, Islamic Azad University, Iran

Assist. Prof. Dr. Mohammad Divandari is an Assistant Professor of Electrical Engineering/Control Systems at Islamic Azad University, Iran. He holds a Ph.D. in Electrical Engineering from Babol Noshirvani University (2019) with a thesis on switched reluctance motor drives. His research interests include electrical motor theory, control systems, and non-linear control. Dr. Divandari has extensive industry experience, having worked in JEMCO Company in various technical roles from 1998 to 2007. He is skilled in simulation, embedded systems, and electrical drive implementation. He is a member of IEEE and the Iranian Inventors Association. 🧑‍🏫🔧💡📚

 

Publication Profile

Orcid

Google Scholar

Educational Background

Assist. Prof. Dr. Mohammad Divandari earned his Ph.D. in Electrical Engineering from Babol Noshirvani University of Technology in 2019, focusing on the design and implementation of a switched reluctance motor drive with DSP-TMS320F28335, earning a high score of 19.75/20. He completed his M.Sc. in Control Systems at Islamic Azad University, Tehran, in 2003, where his thesis on fuzzy logic control of switched reluctance motors earned him a score of 19/20. Dr. Divandari also holds a B.Sc. in Electronic Engineering from Islamic Azad University, Sabzevar (1998), with a thesis on DC/AC converter design, scoring 18.5/20. 💡🔧📚

 

Professional Experience

Dr. Mohammad Divandari worked as an Electrical Engineer at JEMCO Company (Jovain Electrical Machines Industries Co.) from 1998 to 2007. His roles included installing and operating machinery (1998-1999), working in machinery adjustment committees with foreign experts (1999-2000), and serving as an expert in the technical documents center (2000-2001). He also contributed to the Research and Development (R&D) department (2001-2003) and later worked in sales engineering within the commercial units (2003-2007). His extensive experience helped shape his expertise in electrical systems and engineering solutions. ⚙️🔧🌍

 

Academic Experience

Dr. Mohammad Divandari has had extensive teaching experience in Electrical Engineering and Control Systems. From 2004 to 2019, he was a Lecturer at Islamic Azad University, Iran, where he taught a wide range of subjects, including Electronics, Electrical Machines, Control Systems, Power Electronics, and Pattern Recognition. He also conducted labs on Linear Control Systems, Non-linear Control, and Instrumentation. Since 2019, he has served as an Assistant Professor, continuing his impactful work in teaching and mentoring future engineers. His contributions significantly shape the next generation of electrical engineers. 📚⚡️

 

Software Expertise

Assist. Prof. Dr. Mohammad Divandari has extensive expertise in software tools for simulation and embedded systems. He is proficient in MATLAB/SIMULINK, PLECS, and ANSYS/Maxwell for FEM simulations. His experience extends to embedded systems, specifically with DSP TMS320F28335 using Code Composer Studio for C programming. Additionally, he has hands-on experience with Cadence SPB/OrCAD for Pspice and circuit analysis and Altium Designer for PCB design (two-layer, metalized). His skills in these advanced tools support his research and development in electrical engineering. 🖥️🔧📐

 

Honors and Award

In recognition of his innovative contributions, Assist. Prof. Dr. Mohammad Divandari received a patent in 2001–2002 for an automatic device designed to measure the pressure of automobile tires. This device is adjustable to optimize energy consumption in automobiles. The patent, registered under No. 013233 in Iran on March 13, 2006, showcases his commitment to advancing technology in the automotive and energy sectors. This achievement highlights his inventive approach to solving practical engineering challenges. 🚗🔧⚡

 

Research Focus

Assist. Prof. Dr. Mohammad Divandari’s research focuses on advanced control systems and optimization techniques for switched reluctance motor (SRM) drives, with a strong emphasis on fuzzy logic control to reduce torque ripple and acoustic noise. His work extends to sensorless motor drives, dynamic observers, and electromagnetic levitation systems. Additionally, Dr. Divandari explores brushless DC motors, power electronic systems, and micro-turbine control. His contributions have had significant impacts on energy efficiency, control systems, and motor design. 🌍🔌📉 His work is essential in the electrical engineering and control systems domains.

 

Publication Top Notes

  • Radial force and torque ripple optimization for acoustic noise reduction of SRM drives via fuzzy logic control (Cited by: 52, Year: 2010) ⚙️📉
  • Speed control of switched reluctance motor via fuzzy fast terminal sliding-mode control (Cited by: 44, Year: 2019) ⚡📊
  • A novel dynamic observer and torque ripple minimization via fuzzy logic for SRM drives (Cited by: 32, Year: 2009) 🔄🔧
  • Tooth profile modification and its effect on spur gear pair vibration in presence of localized tooth defect (Cited by: 27, Year: 2012) ⚙️🔍
  • A novel sensorless SRM drive via hybrid observer of current sliding mode and flux linkage (Cited by: 23, Year: 2007) 🚗🔩
  • Torque estimation of sensorless SRM drive using adaptive-fuzzy logic control (Cited by: 18, Year: 2016) 🧠⚙️
  • High performance SRM drive with hybrid observer and fuzzy logic torque ripple minimization (Cited by: 15, Year: 2007) 🔋🔧
  • Conversion of shaded-pole induction motor to switched reluctance motor and effects of pole shoe and notch on SRM noise (Cited by: 13, Year: 2013) 🔊🔩
  • Single phase application of space vector pulse width modulation for shunt active power filters (Cited by: 13, Year: 2007) ⚡🔌
  • Robust speed control of switched reluctance motor drive based on full order terminal sliding mode control (Cited by: 11, Year: 2020) ⚙️🛠
  • A novel control-rod drive mechanism via electromagnetic levitation in MNSR (Cited by: 10, Year: 2014) ⚡🔮
  • Sensorless drive for switched reluctance motor by adaptive hybrid sliding mode observer without chattering (Cited by: 9, Year: 2018) ⚙️🔧
  • Acoustic noise reduction of switched reluctance motor drives (Cited by: 7, Year: 2011) 🔇🔧
  • Improved analytical nonlinear model for switched reluctance motor using Gaussian distribution probability density function (Cited by: 6, Year: 2018) 🧠🔩
  • Minimizing torque ripple in a brushless DC motor with fuzzy logic: applied to control rod driving mechanism of MNSR (Cited by: 5, Year: 2015) ⚡🔧

 

Suganya. R | Engineering | Best Researcher Award

Dr. R. Suganya| Engineering | Best Researcher Award

Associate Professor,  Dr.  N.G.P Institute of Technology,  India.

Dr. R. Suganya, an Associate Professor at Dr. N.G.P Institute of Technology, has nearly 20 years of experience in engineering education. Her research focuses on mobile networks, IoT, and machine learning, resulting in 21 publications in Scopus-indexed journals. Notable achievements include the Academic Excellence Award from Novel Research Academy and multiple NPTEL accolades. As a mentor for the IITB-AICTE Mapathon, she has demonstrated her commitment to student engagement and collaborative learning. Dr. Suganya’s impressive contributions to academia and research make her a deserving candidate for the Research for Best Researcher Award.

Publication Profile

Google Scholar

Educational Background 

Dr. R. Suganya holds a commendable academic record, beginning with her Bachelor of Engineering (B.E.) in Electronics and Communication from V.L.B Janakiammal College of Engineering and Technology, where she graduated with First Class honors. She continued her education at Kumaraguru College of Technology, earning a Master of Engineering (M.E.) in Computer Science and Engineering with Distinction. Her commitment to academic excellence culminated in a Ph.D. from Anna University, Chennai, where she conducted advanced research, further solidifying her expertise in her field. This solid educational foundation underpins her effective teaching and innovative research contributions in engineering.

Professional Experiences

Dr. R. Suganya has a robust academic background, currently serving as an Associate Professor at Dr. N.G.P Institute of Technology since May 2023, following an extensive tenure of nearly 17 years at Sri Krishna College of Technology. Her teaching experience spans across various levels of engineering education, showcasing her dedication to nurturing the next generation of engineers. Additionally, her role as a lecturer at Nanjiah Lingammal Polytechnic College provided her with foundational teaching experience that further solidified her pedagogical skills.

Research Interests and Contributions

Dr. Suganya’s research interests are primarily in the domains of mobile networks, IoT, and machine learning, evidenced by her impressive publication record. She has authored 21 articles in Scopus-indexed journals, covering innovative topics such as channel allocation methods, secure voting systems, and cancer recognition frameworks. Her recent work involves the application of advanced algorithms and machine learning techniques, demonstrating her commitment to leveraging technology for real-world applications.

Awards and Achievements  

Dr. Suganya’s achievements have not gone unnoticed. She has received several accolades, including the Academic Excellence Award from Novel Research Academy and the NPTEL Discipline Star Award on two occasions. Her recognition as a mentor for the IITB-AICTE Mapathon further underscores her ability to guide students and foster collaborative learning environments. Such acknowledgments illustrate her impact within the academic community and her dedication to excellence in research and teaching.

Conclusion

In conclusion, Dr. R. Suganya’s extensive experience, notable research contributions, and numerous accolades make her an exceptional candidate for the Research for Best Researcher Award. Her commitment to academic excellence, coupled with her innovative research in technology, positions her as a leading figure in her field. Recognizing her contributions through this award would not only honor her achievements but also inspire others in the academic community to pursue excellence in research and education.

Publication Top Notes

  • Automated smart trolley with smart billing using Arduino 📝 (22) – 2016
  • Classification of DDoS attacks–A survey 📊 (13) – 2020
  • Simulation and Analysis of SVHM Technique for DCMLI under Transient Conditions with Non-Linear Loads 🔬 (8) – 2017
  • Blockchain based secure voting system using IoT 🔒 (6) – 2020
  • Reduction of THD in Single Phase AC to DC Boost Converter using PID controller ⚡ (6) – 2014
  • Fuzzy rough set inspired rate adaptation and resource allocation using Hidden Markov Model (FRSIRA-HMM) in mobile ad hoc networks 🧠 (5) – 2019
  • Automated Toll Plaza System Using RFID and GSM Technology 🚦 (5) – 2018
  • Tamper detection using watermarking scheme and k-mean clustering for bio-medical images 🖼️ (5) – 2016
  • Voltage control of AC-DC converter using sliding mode control ⚙️ (5) – 2013
  • Air Quality Monitoring System with Emergency Alerts Using IoT 🌍 (4) – 2021
  • Detect fake identities using improved Machine Learning Algorithm 🔍 (4) – 2021
  • Smart sentimental analysis of the impact of social media on COVID-19 📱 (4) – 2021
  • Pathogenesis of oral squamous cell carcinoma—an update 🦷 (4) – 2019
  • Identifying and Ranking Product Aspects based on Consumer reviews 🛍️ (4) – 2015
  • An Iterative Image Restoration Scheme for Degraded Face Images 🖥️ (4) – 2013
  • Product review analysis by web scraping using NLP 📝 (3) – 2022
  • An Erlang Factor integrated channel allocation method for boosting quality of services in mobile ad hoc networks 📶 (3) – 2018
  • Denial-of-Service Attack Detection Using Anomaly with Misuse Based Method 🚫 (3) – 2016
  • Development and Proposal System for the Formulation of Solar paint 🌞 (2) – 2021
  • Immunohistochemical expression of Bcl‑2 in oral squamous cell carcinoma 🩺 (2) – 2009