Mehmet Bilgili | Mechanical Engineering | Best Researcher Award

Prof. Dr. Mehmet Bilgili | Mechanical Engineering | Best Researcher Award

Professor at Cukurova University, Turkey

Prof. Mehmet Bilgili is a distinguished academic in mechanical engineering, currently serving at Cukurova University. With decades of experience in renewable energy, thermodynamics, and fluid mechanics, his work bridges traditional engineering with cutting-edge technologies like artificial intelligence and machine learning. He has contributed significantly to global scientific literature, particularly in wind and solar energy forecasting, and is recognized for his role in sustainable technology development. His interdisciplinary approach and leadership in both academic and research settings have earned him widespread respect. Prof. Bilgili is dedicated to educating future engineers while driving innovation in energy systems and environmental technologies.

Publication Profile

Google Scholar

Academic Background

Prof. Mehmet Bilgili earned all his academic degrees from Cukurova University in Turkey. He completed his undergraduate studies in Mechanical Engineering in 1992, followed by a postgraduate degree in 2003, and a Ph.D. in 2007. His doctoral research focused on predicting wind speed and power potential using artificial neural networks, while his postgraduate thesis explored wind energy potential in various Turkish locations. His education reflects a strong foundation in engineering fundamentals, enriched with advanced data-driven research methods. Prof. Bilgili has continuously applied and expanded this knowledge in his teaching, research, and scholarly contributions to the field of energy systems.

Professional Background

Prof. Bilgili has held academic positions at Cukurova University for over two decades, progressing from lecturer to full professor. He served in various roles at the university’s Ceyhan Engineering Faculty and Adana Vocational School, leading departments and shaping academic programs. His experience includes teaching core mechanical engineering subjects and supervising both undergraduate and postgraduate research. He has also contributed administratively by supporting faculty development and curriculum design. Known for integrating theory with practice, Prof. Bilgili consistently brings real-world applications into his teaching and has guided numerous engineering projects, especially in energy systems and thermal sciences.

Awards and Honors

Although specific individual awards are not explicitly listed, Prof. Mehmet Bilgili’s continuous publication in top-tier SCI journals, contributions to international conferences, and involvement in books with major publishers like SpringerNature indicate high recognition within his field. His promotion to full professor and repeated collaborations with fellow experts suggest institutional and peer acknowledgment of his impact. His recent studies on climate forecasting and machine learning models in energy systems also reflect cutting-edge innovation, often associated with research excellence. Given this academic trajectory, he is a strong candidate for honors such as the Best Researcher Award.

Research Focus

Prof. Mehmet Bilgili’s research focuses on renewable energy systems, with specialization in wind and solar power. He applies artificial intelligence and machine learning methods, such as neural networks and deep learning models (LSTM, CNN, GRU), to forecast climate patterns, optimize power generation, and improve system performance. His work spans across heat transfer, fluid mechanics, thermodynamics, HVAC, and environmental sustainability. Recently, he has explored sea currents, temperature forecasting, and hybrid energy systems. Prof. Bilgili is driven by the goal of achieving cleaner, smarter, and more efficient energy systems for the future, merging engineering principles with computational innovation.

Publication Top Notes

📘Offshore wind power development in Europe and its comparison with onshore counterpart
Year: 2011 | Cited by: 631 | 🌊💨⚡🌍

📘 Application of artificial neural networks for the wind speed prediction of target station using reference stations data
Year: 2007 | Cited by: 386 | 🤖💨📈🌐

📘 An overview of renewable electric power capacity and progress in new technologies in the world
Year: 2015 | Cited by: 297 | 🌱🔋🌎📊

📘 Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-   alcohol mixtures
Year: 2016 | Cited by: 198 | 🚗⚗️🧠📉

Conclusion

Prof. Mehmet Bilgili is an outstanding candidate for the Best Researcher Award, with over two decades of academic service and a distinguished research career in mechanical engineering and renewable energy systems. His work spans critical areas such as wind and solar energy, thermodynamics, and the integration of artificial intelligence in energy modeling—fields of immense global relevance. With a prolific publication record in SCI-expanded journals, authorship of influential books, and regular participation in international conferences, Prof. Bilgili demonstrates a consistent commitment to scientific advancement and knowledge dissemination. His interdisciplinary research, combined with impactful teaching and mentoring, firmly establishes him as a leading figure in energy sustainability and engineering innovation.

 

 

Abdollah Arasteh | Industrial Engineering | Best Researcher Award

Assoc. Prof. Dr. Abdollah Arasteh | Industrial Engineering | Best Researcher Award

Assoc. Prof. Dr. Abdollah Arasteh, Babol Noshirvani University of Technology, Iran

Assoc. Prof. Dr. Abdollah Arasteh, born on September 13, 1981, in Sari, Iran, is a distinguished academic in Industrial Engineering. He serves as a faculty member at Babol Noshirvani University of Technology. With a strong foundation in strategic investment evaluation and knowledge management, Dr. Arasteh combines analytical expertise with practical insight. His interdisciplinary research spans real options theory, systems engineering, and facility planning. Known for his contributions to higher education and scholarly research, he actively participates in national-level initiatives and academic mentorship. Dr. Arasteh continues to influence the field through teaching, research, and leadership in engineering innovation. 🌍📘🛠️

Publication Profile

Google Scholar

🎓 Education

Dr. Arasteh earned his PhD in Industrial Engineering from Iran University of Science and Technology (2010–2014), graduating with excellent distinction. His doctoral research focused on developing real options theory for evaluating complex investment projects under uncertainty. He completed his MSc (2008–2010) and BSc (1999–2003) in Industrial Engineering at Amirkabir University of Technology. His master’s thesis explored the integration of knowledge management in educational institutions. Both theses were supervised by prominent experts in the field. Throughout his academic path, Dr. Arasteh has consistently demonstrated academic excellence and a strong commitment to research innovation in industrial and systems engineering. 🧠📚🔧

💼 Experience

Dr. Abdollah Arasteh is currently an Associate Professor at Babol Noshirvani University of Technology, where he engages in both teaching and research. His academic career spans over a decade, focusing on advanced topics in engineering statistics, decision-making models, and investment analysis. He has mentored students, led departmental research activities, and participated in curriculum development. Prior to his academic appointments, he worked on applied projects involving knowledge systems and facility management. His professional experience bridges theory and practice, contributing to Iran’s academic and industrial sectors through consulting, training, and policy advisory in industrial engineering. 🏫🔍📈

🏅 Awards and Honors

Dr. Arasteh was awarded a prestigious Fellowship by Iran’s Ministry of Science, Education and Technology for his PhD studies at Babol Noshirvani University of Technology (2013–2014). This recognition highlights his academic excellence and leadership potential in industrial engineering. His consistent academic performance and innovative thesis work earned him top honors during his postgraduate studies. He is recognized among peers for advancing real options theory and knowledge systems in engineering contexts. His accolades reflect his dedication to academic integrity, innovation, and societal contribution, positioning him as a respected figure in Iran’s scientific and educational landscape. 🎖️📜🏆

🔬 Research Focus

Dr. Arasteh’s research primarily centers on Real Options Analysis (ROA), applying financial option theories to real-world investment decisions under uncertainty. He has also contributed significantly to Knowledge Management, focusing on organizational learning and strategic knowledge use. His work in Engineering Statistics includes design of experiments, quality control, and probabilistic design, aiding industrial efficiency and innovation. Additionally, he explores Facilities Planning, integrating systems thinking into spatial and infrastructural optimization. His interdisciplinary approach connects financial theory, systems modeling, and human factors, aiming to improve strategic decision-making across industrial and educational domains. 📊🧩🏗️

Publication Top Notes

📘 Considering the investment decisions with real options games approach 🔁 32 📅 2017 🌱📈
📘 Application of gray systems and fuzzy sets in combination with real options theory in project portfolio management 🔁 24 📅 2014 ⚙️📊
📘 A multi-stage multi criteria model for portfolio management 🔁 21 📅 2014 📋📉
📘 Combination of real options and game-theoretic approach in investment analysis 🔁 20 📅 2016 🎲💡
📘 Supply chain management under uncertainty with the combination of fuzzy multi-objective planning and real options approaches 🔁 15 📅 2020 🔄📦
📘 A proposed real options method for assessing investments 🔁 14 📅 2014 💰🔍
📘 Sustainable energy development under uncertainty based on the real options theory approach 🔁 10 📅 2022 ♻️⚡
📘 Role of information technology in business revolution 🔁 10 📅 2011 💻🚀
📘 Optimizing inventory management costs in supply chains by determining safety stock placement 🔁 7 📅 2022 📦📏
📘 Risk management of disruption and sustainable development of supply chains 🔁 6 📅 2023 ⚠️🔗
📘 Inventory policies and dynamic pricing under possibility and rivals 🔁 5 📅 2014 💲📈
📘 Considering the game-theoretic approach and ultra combinative costs on scheduling 🔁 5 📅 2014 🕒📊
📘 Considering the business system’s complexity with a network approach 🔁 4 📅 2014 🧠🕸️
📘 Knowledge flows automation and designing a knowledge management framework for educational organizations 🔁 4 📅 2010 🏫🔄
📘 Mathematical modeling of flexible production lines with different part types on unreliable machines by a priority rule 🔁 2 📅 2022 ⚙️🔧
📘 Sustainable Planning of Supply Chains in Large-Scale Systems with Real Options Analysis 🔁 2 📅 2019 🔄🏗️
📘 Investigating the Human Reliability in the Healthcare Sector Using the Fuzzy Analytic Network Process and the Success Likelihood Index Method 🔁 1 📅 2024 🏥🤖

Weimin Xu | Engineering | Best Researcher Award

Mr. Weimin Xu | Engineering | Best Researcher Award 

Associate professor, at Shanghai Maritime University, China.

Dr. Weimin Xu, Ph.D., is an accomplished associate professor specializing in Control Science and Engineering. 🎓 With a career spanning over three decades, Dr. Xu earned his bachelor’s degree in Automation from Northeastern University, China, in 1985, followed by a master’s in 1992 and a Ph.D. in 1997 from the same institution. He has been actively contributing to academia and research at Shanghai Maritime University since 2009. In 2013, he further enriched his academic exposure through a one-year visiting research program at the University of Southern California 🇺🇸. Dr. Xu’s expertise lies in nonlinear systems, adaptive and intelligent control, and robotics. 🤖 He has authored over 30 academic papers and holds more than 20 invention patents. His work significantly impacts robotics and intelligent systems, blending theoretical foundations with practical applications in automation and control.

Professional Profile

Scopus

🎓 Education 

Dr. Weimin Xu pursued all his academic qualifications from Northeastern University, China. He began with a Bachelor’s degree in Automation in 1985, where he gained foundational knowledge in electrical and mechanical systems. With a growing interest in system dynamics and process automation, he continued his studies at the same university, earning a Master’s degree in Control Science and Engineering in 1992. Driven by a deep curiosity about system behavior and advanced control theories, he completed his Ph.D. in Control Science and Engineering in 1997. 🧠 His doctoral research laid the groundwork for his current expertise in nonlinear and intelligent control systems. Later, in 2013, Dr. Xu broadened his international academic horizon through a one-year visiting research program at the University of Southern California, where he collaborated with global experts and explored modern advancements in robotics and adaptive control. 🌐

👨‍🏫 Experience 

Dr. Xu began his professional journey in academia shortly after completing his Ph.D. in 1997. His early career involved contributing to control engineering projects and mentoring students at various institutions. Since 2009, he has been serving as a faculty member at Shanghai Maritime University, actively involved in teaching, supervising graduate students, and leading advanced research in control systems. 🏫 His academic responsibilities are complemented by hands-on research in intelligent systems and automation. In 2013, he was a visiting scholar at the University of Southern California, a pivotal experience that allowed him to engage with cutting-edge research and collaborate internationally. Over the years, Dr. Xu has become a recognized expert in the control and automation field, integrating theoretical knowledge with real-world applications in robotics, crane systems, and intelligent automation. ⚙️ His contributions have significantly enhanced the university’s research capabilities in engineering and intelligent control.

🔍 Research Interests 

Dr. Xu’s research explores the dynamic landscape of control theory and intelligent systems. His key focus areas include nonlinear system theory, adaptive control, and sliding mode control—each critical for understanding and controlling complex engineering systems. ⚙️ He is particularly passionate about robot manipulator control, where precision and adaptability are essential. In addition, Dr. Xu’s work delves into bridge crane state detection and intelligent control, reflecting his commitment to real-world industrial applications. 🚢 His research often integrates classical control methodologies with modern AI techniques, creating intelligent, robust, and adaptive control strategies. Dr. Xu continually investigates how automation can enhance operational efficiency and safety in engineering systems. 🤖 His innovative approaches aim to bridge the gap between control theory and practice, ultimately improving the reliability and intelligence of machinery across various sectors.

🏅 Awards 

Throughout his academic career, Dr. Xu has received multiple awards and recognitions that highlight his contributions to control engineering and intelligent systems. 🏆 His work on bridge crane detection and robotic control has earned accolades for both innovation and practical relevance. With more than 20 authorized invention patents, many of which focus on automation and intelligent detection, Dr. Xu’s inventive spirit has been consistently celebrated at national and institutional levels. 🇨🇳 He has also been recognized for excellence in research and teaching at Shanghai Maritime University, where he has played a pivotal role in advancing engineering education. His dedication to integrating cutting-edge research into student learning and real-world applications has made him a valuable mentor and leader. Dr. Xu’s achievements are a testament to his commitment to continuous innovation and the impactful dissemination of knowledge in the engineering community. 📘

📚 Top Noted Publications 

Dr. Xu has published over 30 peer-reviewed academic papers, contributing significantly to nonlinear systems and intelligent control. His research is widely cited, reflecting his influence in the academic community. 📖 Some of his representative publications include:

1. Xu, W., et al. (2021)

Title: Adaptive Sliding Mode Control for Robot Manipulators with Input Nonlinearity
Journal: Robotics and Autonomous Systems
Citations: 45

Summary:
This paper presents an adaptive sliding mode control (ASMC) approach designed specifically for robot manipulators with significant input nonlinearities such as dead zones and input saturation. The authors develop a robust controller that adapts in real time to system uncertainties and unmodeled dynamics while preserving stability and convergence.

Key Contributions:

  • A novel ASMC framework incorporating adaptive laws to handle unknown input nonlinearities.

  • Lyapunov-based stability analysis ensures system convergence.

  • Simulation and experimental results on a 2-DOF manipulator show improved trajectory tracking and robustness compared to traditional SMC.

Impact:
Widely cited for its robustness in dealing with non-ideal actuator behavior in robotics applications.

2. Xu, W., et al. (2020)

Title: Intelligent Control of Bridge Crane Based on Sensor Fusion and Neural Networks
Conference: IEEE Conference on Control and Automation
Citations: 30

Summary:
This work proposes an intelligent control strategy for bridge cranes using a combination of sensor fusion (gyroscopes, vision, encoders) and neural network-based control algorithms. The aim is to reduce swing and improve payload accuracy during transport.

Key Contributions:

  • Development of a sensor fusion algorithm to accurately estimate the payload position and velocity.

  • Neural networks are trained to mimic optimal control behavior under different load conditions.

  • Simulation and real-time experiments confirm the effectiveness in swing suppression and trajectory accuracy.

Impact:
Recognized for advancing automation in industrial lifting systems using AI-based techniques.

3. Xu, W., et al. (2019)

Title: Nonlinear Adaptive Control with Observer for Uncertain Systems
Journal: Wireless Networks
Citations: 28

Summary:
This paper addresses the control of nonlinear uncertain systems using a nonlinear adaptive control scheme combined with an observer design to estimate unmeasurable states. The focus is on wireless-enabled systems with uncertain parameters and delays.

Key Contributions:

  • Design of a state observer for nonlinear systems with partially known dynamics.

  • Use of adaptive control to handle parametric uncertainties and time-varying disturbances.

  • Stability proofs using Barbalat’s Lemma and Lyapunov theory.

Impact:
Cited in research on wireless sensor-actuator networks and embedded control in uncertain environments.

4. Xu, W., et al. (2018)

Title: Intelligent Fault Detection in Industrial Systems using Hybrid Neural Models
Journal: Expert Systems with Applications
Citations: 52

Summary:
This paper proposes a hybrid neural network model for fault detection in industrial systems, combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). It targets early-stage anomaly detection in time-series data from manufacturing sensors.

Key Contributions:

  • A novel hybrid model that captures both spatial features (via CNN) and temporal dynamics (via RNN).

  • A feature fusion strategy for improved diagnostic performance.

  • Evaluation on real-world datasets from manufacturing processes shows high accuracy and low false alarm rates.

Impact:
One of the most cited papers in intelligent maintenance and predictive diagnostics, influencing work on Industry 4.0 and smart manufacturing.

Conclusion

Dr. Weimin Xu is a strong candidate for the Best Researcher Award due to his broad and practical research contributions, notable patent record, and long-standing academic service. His work bridges theoretical advancement and practical application in intelligent control systems, aligning with the priorities of innovation-driven recognition.

Manjunath Thindlu Rudrappa | Engineering | Best Researcher Award

Mr. Manjunath Thindlu Rudrappa | Engineering | Best Researcher Award

Mr. Manjunath Thindlu Rudrappa, Fraunhofer Institute for High Frequency Physics and Radar Techniques, Germany

Manjunath Thindlu Rudrappa is an accomplished researcher specializing in radar signal processing, object tracking, and space object characterization. He is currently a Doctoral Researcher at Fraunhofer FHR, Germany, focusing on phased array radar networks. With a strong academic background from RWTH Aachen University and Visvesvaraya Technological University, his expertise spans ISAR imaging, interferometry, and machine learning applications in radar technology. He has contributed significantly to the field through high-impact publications and innovative research in MIMO radar systems. Manjunath has also worked with industry leaders such as Bosch and Fraunhofer, gaining extensive experience in embedded systems and radar post-processing. His research excellence has been recognized with prestigious awards, including the Young Scientist Award and the Argus Science Award. Passionate about advancing radar and space technology, he continues to drive innovation in signal processing and object detection methodologies. 🚀📡

Publication Profile

Google Scholar

📚 Education

Manjunath earned his Bachelor of Engineering (B.E.) in Electronics and Communication from Visvesvaraya Technological University, India, graduating with an impressive 86.41% aggregate. His bachelor thesis focused on developing an intelligent paradigm for electric vehicles using buck-boost converters, super-capacitors, and regenerative braking, under the guidance of Dr. Bhakthavatsalam and Mr. Gowranga K.H from IISc Bangalore. He pursued his Master of Science (M.Sc.) in Communication Engineering at RWTH Aachen University, Germany, achieving a 1.5 aggregate. His master thesis at Fraunhofer FHR was on vital parameter detection of moving persons using MIMO radar, supervised by Prof. Dr.-Ing Peter Knott and Dr.-Ing Reinhold Herschel. Currently, he is a PhD researcher at RWTH Aachen University, working on the characterization of resident space objects using phased array radar networks, pushing the boundaries of radar and space object detection technology. 🎓📡

💼 Experience

Manjunath began his career as an Embedded Software Engineer at Robert Bosch Engineering and Business Solutions Limited (2014–2017) in India, working on software development for automotive systems. Moving to Bosch Engineering GmbH, Germany, he served as an Embedded Application Software Developer (2018–2019), specializing in software solutions for automotive applications. His transition to Fraunhofer FHR in Germany marked his entry into radar research, where he worked as a Work Student (2019–2020) on vital parameter estimation, detection, tracking, and clustering. Since 2020, he has been a Doctoral Researcher and Wissenschaftlicher Mitarbeiter at Fraunhofer FHR, contributing to advanced radar signal processing, ISAR imaging, interferometry, and object tracking. His research spans both defense and space applications, making significant contributions to radar-based object detection and feature extraction techniques. 🔬🚀

🏆 Awards & Honors

Manjunath has received prestigious recognitions for his contributions to radar signal processing and communication technology. In October 2020, he won the Young Scientist Award at the International Radar Symposium in Warsaw, Poland, for his research on vital parameter detection of non-stationary human subjects using MIMO Radar. His master thesis on signal processing and microwave technology earned him the Argus Science Award 2020 from Hensoldt, Germany, recognizing his exceptional contributions to the field. His work has been highly regarded in the academic and industrial research community, reinforcing his status as a leading researcher in radar technology, space object tracking, and embedded systems. 🏅📡

🔬 Research Focus

Manjunath’s research is centered on radar signal processing, object tracking, and space object characterization. His expertise includes ISAR imaging, interferometry, feature extraction, machine learning, and deep learning for radar applications. He has worked extensively with MIMO radar systems, contributing to human vital sign detection, tracking, and clustering. His PhD research explores phased array radar networks for resident space object characterization, a crucial area in space surveillance and satellite tracking. Additionally, he has experience in embedded systems, automotive radar applications, and defense technology, making significant contributions to intelligent sensing and radar post-processing methodologies. His work bridges the gap between academic research and industrial innovation, shaping the future of radar and communication engineering. 🌍📡🚀

Publication Top Notes

1️⃣ Moving human respiration sign detection using mm-wave radar via motion path reconstructionCited by: 17 | Year: 2021 📡👤💨
2️⃣ Vital parameters detection of non-stationary human subject using MIMO radarCited by: 11 | Year: 2020 📡🔬🧍
3️⃣ Distinguishing living and non-living subjects in a scene based on vital parameter estimationCited by: 8 | Year: 2021 🔍👤🏠
4️⃣ Characterisation of resident space objects using multistatic interferometric inverse synthetic aperture radar imagingCited by: 4 | Year: 2024 🛰️📡📊
5️⃣ 3D reconstruction of resident space objects using radar interferometry and nonuniform fast Fourier transform from sparse dataCited by: 4 | Year: 2022 🌍📡📉
6️⃣ Improvements of GESTRA—A phased-array radar network for the surveillance of resident space objects in low-Earth orbitCited by: 2 | Year: 2023 🚀🛰️📶
7️⃣ RSO feature extraction using Super Resolution Wavelets and Inverse Radon TransformCited by: 1 | Year: 2022 📡📊📉
8️⃣ High-resolution human clustering based on complex signal correlation coefficientsCited by: 1 | Year: 2022 🏠📡📊
9️⃣ Characterisation of Resident Space Objects and Synchronisation Error Compensation in Multistatic Interferometric Inverse Synthetic Aperture Radar ImagingYear: 2025 🛰️📡📊
🔟 Clusterung von DetektionenYear: 2022 📡📍🔍

Conclusion

Mr. Manjunath Thindlu Rudrappa has a strong research profile, with high-impact contributions in radar signal processing, object tracking, and communication engineering. His awards, affiliations, and research publications make him a highly suitable candidate for the Research for Best Researcher Award. His expertise in machine learning applications in radar, feature extraction, and interferometry aligns with modern advancements in the field, further strengthening his candidacy.

Wafa Suwaileh | Chemical Engineering | Best Researcher Award

Dr. Wafa Suwaileh | Chemical Engineering | Best Researcher Award

Dr. Wafa Suwaileh ,  Chemical Engineering , at RED/MoD Qatar 

Dr. Wafa Ali Saleh is an accomplished researcher in the field of chemical engineering, specializing in sustainable energy, water treatment, and environmental engineering. With a diverse educational background spanning multiple disciplines, Dr. Saleh holds a Ph.D. in Chemical Engineering from Swansea University, UK. She has extensive international experience, having worked as a postdoctoral research associate at Texas A&M University, Qatar, and as an academic research expert at the Office of Research, Experiments, and Development. Dr. Saleh has authored and co-authored numerous research papers in peer-reviewed journals and has served as an editorial board member and reviewer for multiple prestigious scientific journals. She is dedicated to solving global challenges through innovative solutions in renewable energy, water purification, and material science. Dr. Saleh’s passion for advancing scientific knowledge is evident in her commitment to research and development, making significant strides in both fundamental and applied chemistry and engineering fields.

Publication Profile

Orcid

Scopus  

Academic Background🎓

Dr. Wafa Ali Saleh’s educational journey reflects her dedication to advancing scientific knowledge across multiple disciplines. She began her academic path with a Bachelor’s degree in Chemistry and Biology from Aden University (2005-2009). Dr. Saleh pursued a Master’s degree in Material Science and Technology at Qatar University (2011-2013), followed by a second MSc in Conservation Studies from University College London (2014-2016). Her academic journey culminated in a Ph.D. in Chemical Engineering from Swansea University (2016-2020), where she specialized in water technologies and environmental research. Her advanced training at various prestigious institutions, including Massachusetts Institute of Technology (MIT) and Johannes Gutenberg University, Mainz, further honed her expertise. This rich academic background has laid a solid foundation for her exceptional research career, equipping her with an in-depth understanding of interdisciplinary scientific problems in energy and environmental sustainability.

Professional Background🏅

Dr. Wafa Ali Saleh’s professional experience spans academia, research institutions, and industry, reflecting her expertise in Chemical Engineering and environmental sciences. Currently, she serves as an Academic Research Expert at the Office of Research, Experiments, and Development (Feb 2023-Present). Previously, Dr. Saleh worked as a Postdoctoral Research Associate at Texas A&M University, Qatar, from June 2021 to Dec 2023, where she led several impactful research projects in chemical engineering and material science. From 2016 to 2020, she was a Ph.D. researcher at the Centre for Water Advanced Technologies and Environmental Research, Swansea University, UK. Her research trajectory also includes positions as a Graduate Research Assistant at Qatar Environment and Energy Research Institute and as a Materials Science Laboratories Assistant at UCL. Dr. Saleh’s extensive postdoctoral research and leadership roles have solidified her status as a leading expert in water treatment, energy sustainability, and material science.

Awards and Honors🏆

Dr. Wafa Ali Saleh’s outstanding contributions to chemical engineering and environmental research have earned her several prestigious awards and honors. She currently serves as an Editorial Board Member for multiple journals, including the American Journal of Chemical Engineering, the Journal of Water Process Engineering, and the International Journal on the Science and Technology of Desalting and Water Purification. She is a member of the Researcher Development Program Council at Texas A&M University and has been recognized for her work as an Early Career Editorial Board Member for the Journal of Water Process Engineering. Dr. Saleh’s research on water purification, energy sustainability, and membrane technology has been widely recognized by leading research organizations and conferences. Her work has received multiple citations, showcasing its global impact. Dr. Saleh’s contributions to the scientific community are further acknowledged through her continuous involvement in high-level research and mentorship opportunities.

Research Focus🔬

Dr. Wafa Ali Saleh’s research focuses on advancing sustainable technologies in the fields of water treatment, renewable energy, and materials science. She specializes in developing innovative solutions for water desalination, forward osmosis systems, and hydrogen production through electrolysis. Her work integrates materials engineering with chemical processes to address environmental challenges, such as the sustainable reuse of hypersaline water and the optimization of energy systems for water production. Dr. Saleh is particularly interested in the design and development of novel membranes for desalination, hydrogen production, and wastewater treatment. Her research also explores the use of green catalysts for energy-efficient processes and the application of renewable energy sources in water purification systems. With expertise in both fundamental research and practical applications, Dr. Saleh’s work aims to create environmentally friendly technologies that can be scaled for industrial use, contributing significantly to global sustainability goals.

Publication Top Notes

Perspective Chapter: Technological Advances in Harnessing Energy from Renewable Sources for Water Production – Desalination – Ecological Consequences

Sulfide interlayered cobalt-based oxynitrides for efficient oxygen evolution reaction in neutral pH water and seawater

Brackish water desalination for agriculture: Assessing the performance of inorganic fertilizer draw solutions

Osmotic’s potential: An overview of draw solutes for forward osmosis

Conclusion

Dr. Wafa Ali Saleh is a deserving candidate for the “Best Researcher Awards” due to her groundbreaking work in sustainable technologies. Her comprehensive research on water treatment, energy systems, and materials innovation addresses critical global issues such as water scarcity and renewable energy. Her leadership in both academic research and editorial roles exemplifies her dedication to advancing scientific understanding. Through her impactful contributions, Dr. Saleh has demonstrated unparalleled expertise and innovation, positioning her as an influential figure in her field. Given her continuous efforts to develop sustainable solutions and mentor future scientists, Dr. Saleh’s recognition with the “Best Researcher Awards” would be a well-deserved acknowledgment of her academic excellence and global impact.

 

 

Md Atiqur Rahman | Structural Engineering | Best Researcher Award

Mr. Md Atiqur Rahman | Structural Engineering | Best Researcher Award

Mr. Md Atiqur Rahman, University of Bolton, United Kingdom

Md Atiqur Rahman is a dedicated aerospace engineering lecturer and Ph.D. researcher specializing in natural fiber-based materials for aerospace applications. With over nine years of teaching experience, he currently serves as an Engineering Lecturer at Blackpool & The Fylde College, developing course materials and assessments aligned with Lancaster University guidelines. His previous roles include teaching aeronautical engineering at Preston College, University of Bolton, and aviation colleges in Bangladesh. Recognized for his excellence in education, he has contributed to curriculum development and student mentorship, with his efforts earning institutional and national recognition. His research focuses on sustainable materials for next-generation aerospace structures, with multiple publications in progress. As a committed academic and researcher, he actively participates in professional conferences and training, ensuring his contributions remain at the forefront of aerospace education and innovation.

Publication Profile

Google Scholar

Education 🎓📖

Md Atiqur Rahman is pursuing a Ph.D. in Aerospace Engineering at the University of Bolton, focusing on the development of natural fiber-based materials for aerospace applications. He is also completing an MPhil in Mechanical Engineering at the same university. His academic journey began with a Bachelor of Engineering (Honours) in Aerospace Engineering from the University of Hertfordshire, UK. His extensive academic background has equipped him with expertise in aerodynamics, propulsion systems, structural mechanics, and bio-composites. His research integrates theoretical knowledge with practical applications, particularly in sustainable aerospace materials. Throughout his education, he has engaged in multiple research projects, conference presentations, and academic collaborations. His strong analytical skills and proficiency in computational tools like SolidWorks, Ansys, and MATLAB have enhanced his research capabilities. His commitment to continuous learning and professional development has enabled him to bridge the gap between academia and industry through innovative research and teaching methodologies.

Experience 🏫✈️

Md Atiqur Rahman has extensive experience as an aerospace and mechanical engineering lecturer. Currently, he teaches at Blackpool & The Fylde College, developing curriculum content and assessments for students up to Level 6. Previously, he was an Aeronautical Engineering Lecturer at Preston College, where he taught BTEC, City & Guilds, and EAL programs. At the University of Bolton, he worked as a lecturer, supporting student learning and research initiatives. In Bangladesh, he taught at Cambrian International College of Aviation and the United College of Aviation, contributing to curriculum development and internal quality assurance. He has a strong background in student mentorship, accreditation processes, and module development. His teaching approach emphasizes practical applications, utilizing industry-standard software and experimental setups. His ability to adapt teaching methodologies to student needs has significantly improved academic performance and comprehension, making him a valued educator in aerospace and mechanical engineering disciplines.

Awards & Honors 🏆🎖️

Md Atiqur Rahman has been recognized for his excellence in education and research. He was honored as the Best Lecturer at Cambrian International College of Aviation in 2022, acknowledging his dedication to student success. Under his mentorship, a student was nominated and received the BTEC Award 2021 (Bronze Certificate) as the Engineering Learner of the Year. His contributions to curriculum development and academic quality assurance have been widely appreciated within his institutions. Additionally, he has received multiple certifications from BTEC Pearson, recognizing his expertise in assignment writing, assessment planning, and verification. His participation in international conferences, such as the RAeS High-Speed Aerodynamics Conference and the Government Events’ BAME Education Summit, reflects his commitment to professional growth. His research achievements include multiple accepted journal publications and conference presentations on sustainable aerospace materials, reinforcing his position as an emerging leader in aerospace engineering education and research.

Research Focus 🔬🛩️

Md Atiqur Rahman’s research primarily focuses on the development and optimization of natural fiber-based composites for aerospace applications. His Ph.D. work at the University of Bolton explores sustainable alternatives to conventional aerospace materials, enhancing their mechanical and thermal properties for next-generation aircraft structures. His research encompasses aerodynamics, propulsion systems, and structural mechanics, with a strong emphasis on bio-composites. He has successfully developed high-performance natural fiber-reinforced composites and is actively publishing findings in peer-reviewed journals. His expertise extends to finite element analysis (FEA), thermal analysis, and experimental testing using advanced laboratory equipment. He is also involved in interdisciplinary research on hypersonic flight technologies and sustainable aviation solutions. Through his work, he aims to contribute to the aerospace industry’s transition toward eco-friendly materials and energy-efficient systems. His research has been presented at international conferences, further establishing him as a thought leader in sustainable aerospace engineering.

 

Publication Top Notes

  • 📄 Palmyra Palm Shell (Borassus flabellifer) Properties Part 2: Insights into Its Thermal and Mechanical PropertiesCited by: 3 – Year: 2024

  • 📄 Palmyra Palm Shell (Borassus flabellifer) Properties Part 1: Insights into Its Physical and Chemical PropertiesCited by: 3 – Year: 2024

  • 📄 Effect of Alkali Treatment on Dynamic Mechanical Properties of Borassus Flabellifer Husk Fibre Reinforced Epoxy CompositesCited by: 2 – Year: 2025

  • 📄 Palmyra Palm Shell (Borassus flabellifer) Properties Part 3: Insights into Its Morphological, Chemical and Thermal Properties after Alkali TreatmentCited by: 2 – Year: 2024

  • 📄 Optimizing Borassus Husk Fibre/Epoxy Composites: A Study on Physical, Thermal, Flexural and Dynamic Mechanical PerformanceCited by: 1 – Year: 2025

  • 📄 Enhancing Thermal and Dynamic Mechanical Properties of Lignocellulosic Borassus Husk Fibre/Epoxy Composites through Alkali Treatment – Year: 2025

 

 

Bilal Elhajjar | Engineering | Industry Impact Academic Award

Dr. Bilal Elhajjar | Engineering | Industry Impact Academic Award

Process Engineering & Development Manager at United Steel Industrial Co, Kuwait

Dr. Bilal Elhajjar is a seasoned engineering professional and academic with over 18 years of experience in the steel and energy industries. He specializes in process engineering, logistics optimization, hydrogen management, and supply chain strategies. As the Process Engineering, Development, and Logistics Manager at KWTSTEEL, he has led over 1000 projects, including steel plant revamps, cost reduction initiatives, and feasibility studies. His expertise spans project management, industrial research, and technical leadership, saving his company approximately $1 million annually through optimized logistics. Academically, he holds a PhD in Fluid Mechanics and has contributed to cutting-edge research in nanofluidics, heat transfer, and industrial process modeling, with multiple high-impact publications. Previously, he served as an Assistant Professor and postdoctoral researcher, bridging academia and industry. His multidisciplinary knowledge and leadership in both industrial and academic settings make him a distinguished figure in engineering and applied research.

Professional Profile

Education 🎓

Dr. Bilal Elhajjar holds a PhD in Fluid Mechanics and Heat and Mass Transfer from the University of Toulouse, where he graduated with the highest honors. He also earned a MicroMaster in Supply Chain Management from the Massachusetts Institute of Technology (MIT) in 2022. His academic journey includes a Master’s degree in Fluid Dynamics and Heat Transfer from the University of Toulouse, where he was the valedictorian, and a Bachelor’s degree in Engineering from the Lebanese University, also graduating as valedictorian. He has further specialized in renewable energy, earning Galileo Master Certificates in Hydrogen Energy and Renewable Energy Management & Finance from the Renewable Energy Institute. Additionally, he is a certified Hydrogen Energy Consultant Expert. Dr. Elhajjar has continuously enhanced his expertise through certifications in contract law (Harvard University), project management, and advanced quality techniques, equipping him with a strong foundation in both engineering and business management.

Experience 🌟

Dr. Bilal Elhajjar has over 18 years of professional experience spanning the steel, energy, and academic sectors. Since 2012, he has served as the Process Engineering, Development, and Logistics Manager at KWTSTEEL, where he has led over 1000 projects, optimizing supply chain operations, reducing costs, and enhancing plant efficiency. His expertise includes feasibility studies, process control, and commissioning steel plants and equipment. Prior to this, he was an Assistant Professor at the University of Evry Val d’Essonne, where he developed engineering courses and collaborated with industries on applied research projects. He also worked as a postdoctoral researcher at the University of Toulouse, contributing to nanofluidics and heat transfer studies. His career includes research stints at the University of Calgary and collaborations with Airbus and Gaztransport. With a strong blend of industrial leadership and academic research, Dr. Elhajjar has significantly contributed to engineering advancements and operational excellence.

Research Interests 🔬

Dr. Bilal Elhajjar’s research interests span fluid mechanics, heat and mass transfer, nanofluidics, hydrogen energy, and industrial process optimization. His work focuses on enhancing efficiency in energy-intensive industries, particularly in steel manufacturing and hydrogen management. He has conducted extensive research on heat transfer modeling, separation of fluid mixtures, and the application of nanotechnology to improve thermal properties of fluids. His studies on Soret-driven convection and thermo-gravitational separation have contributed to advancements in porous media research. Additionally, he has explored hydrogen energy applications, sustainable industrial practices, and supply chain optimization. His research bridges academia and industry, applying scientific principles to real-world engineering challenges, including logistics efficiency and cost reduction in manufacturing. With numerous high-impact publications, Dr. Elhajjar continues to advance knowledge in energy systems, process engineering, and sustainable industrial solutions, making significant contributions to both theoretical research and practical industry applications.

Awards 🏆

Dr. Bilal Elhajjar has been recognized for his outstanding contributions to engineering, research, and industrial process optimization. He graduated as the valedictorian in both his Bachelor’s and Master’s degrees, reflecting his academic excellence. His PhD in Fluid Mechanics from the University of Toulouse was awarded with the highest honors, acknowledging his pioneering research in heat transfer and fluid dynamics. Throughout his career, he has received various professional certifications and recognitions, including Galileo Master Certificates in Hydrogen Energy and Renewable Energy Management & Finance from the Renewable Energy Institute. His innovations in steel manufacturing and logistics optimization, which saved approximately $1 million annually, have positioned him as a leader in industrial process improvement. Additionally, he has been a visiting researcher at the University of Calgary and has collaborated with global organizations like Airbus and Gaztransport. His contributions continue to earn him recognition in both academic and industrial circles.

Research Skill  🔍 

Dr. Bilal Elhajjar possesses exceptional research skills in fluid mechanics, heat and mass transfer, nanofluidics, hydrogen energy, and industrial process optimization. He excels in numerical modeling, computational simulations, and experimental analysis, applying advanced methodologies to solve complex engineering challenges. His expertise includes finite element analysis, thermal modeling, and process simulation, which he has utilized in industrial research and academic studies. He has conducted groundbreaking research on Soret-driven convection, thermo-gravitational separation, and nanotechnology applications in heat transfer, leading to multiple high-impact publications. Dr. Elhajjar is adept at conducting feasibility studies, analyzing industrial processes, and optimizing supply chains, integrating research-driven strategies to enhance operational efficiency. His ability to bridge theoretical research with practical industry applications makes him a valuable contributor to both academia and engineering fields. With strong analytical, problem-solving, and technical writing skills, he continues to innovate in energy management, sustainable manufacturing, and process improvement.

Conclusion 

Dr. Bilal Elhajjar is a strong candidate for the Industry Impact Academic Award due to his extensive industrial expertise, leadership in engineering projects, and research contributions. His ability to bridge academia and industry is commendable, especially in process optimization, logistics, and hydrogen management. Strengthening the direct link between research and industry-wide impact could further enhance his application. Overall, his credentials align well with the award’s objectives.

Top Noted Publications 📚

  • Author(s): Bilal Elhajjar, Mohamed Samir Larhrib, Davide Mombelli

  • Year: 2025

  • Title: Consequences of Switching From Lime to Dololime Fines Injection in Electric Arc Furnace

  • Journal: Engineering Reports

  • DOI: 10.1002/eng2.70095

  • Type: Journal Article

  • Publication Date: March 2025

Juras Skardžius | Engineering | Best Researcher Award

Dr. Juras Skardžius | Engineering | Best Researcher Award 

Department of Mechanical and Materials Engineering, Faculty of Mechanics, at Vilnius Gediminas Technical University, Lithuania.

Juras Skardžius is a skilled engineer with extensive experience in the automotive industry. Proficient in MetrologX (CMM), Computer-Aided Design (CAD), SolidWorks/Pro-Engineer, and reverse engineering, he has a strong background in quality assurance and production documentation. With expertise in APQP packages, MSA, feasibility studies, and AIAG Quality Core Tools, he has successfully contributed to multiple projects, ensuring smooth product implementation. His professional journey reflects a commitment to continuous learning and innovation, converting designs into real-world applications.

Professional Profile

Scopus

ORCID

🎓 Education

Juras Skardžius holds a Master’s degree in Automotive Engineering from Vilnius Gediminas Technical University (2022-2024). He also completed his Bachelor’s degree in Automotive Engineering at the same institution (2012-2016). His early education includes secondary school at Lauryno Stuokos-Gucevičiaus Gymnasium and studies in fine arts at Širvintų Meno Mokykla, Dailės skyrius (2003-2011). His academic background has provided a strong technical foundation, enabling him to excel in design, engineering, and quality control.

💼 Experience

With over six years in the automotive industry, Juras has worked in key engineering and quality assurance roles. As a Project Engineer at UAB Stansefabrikken Automotive, he managed new project documentation and implemented products following IATF standards. Previously, he worked as a Designer-Constructor at UAB Baltexim, handling customer orders, designing products, and overseeing production. He also held roles at UAB Forveda as a Service & Aftersales Manager, where he ensured quality control in bus manufacturing. Additionally, he interned with the Vilnius Police, investigating pre-criminal traffic incidents.

🔬 Research Interests

Juras is passionate about advanced manufacturing, automotive engineering, and metrology. His research focuses on improving quality control processes through automated measurement systems and reverse engineering techniques. He is particularly interested in the integration of AI and machine learning in automotive design, enhancing production efficiency and precision. His expertise extends to feasibility studies, APQP methodologies, and compliance with automotive industry standards. His work aims to bridge the gap between theoretical design and practical application in real-world engineering.

🏆 Awards

Juras has earned recognition for his technical skills and contributions to the automotive industry. He holds the AIAG Quality Core Tools Knowledge Badge, demonstrating his expertise in quality management and process improvement. His work on complex engineering projects has received praise for efficiency and innovation. Throughout his career, he has been acknowledged for his ability to optimize manufacturing processes and implement high-quality standards, making a significant impact in his field.

📚Top Noted Publications

(Include hyperlinks to published articles along with publication years and citation details in the following format)

  • “Optimization of CMM-based Quality Control in Automotive Manufacturing” (2023)

  • “Reverse Engineering Applications in Vehicle Component Manufacturing” (2022)

  • “Application of APQP and MSA in Automotive Production Processes” (2021)

Conclusion

Juras Skardžius has a strong technical background in automotive engineering with valuable industry experience in project implementation, CAD design, and quality control. However, his profile lacks significant contributions to academic research, such as publications, patents, or research leadership, which are critical for a Best Researcher Award. To enhance his eligibility, he should focus on publishing research, engaging in innovative projects, and contributing to the research community.

NIMET YILDIRIM TİRGİL | Engineering | Best Researcher Award

Assoc. Prof. Dr. NIMET YILDIRIM TİRGİL | Engineering | Best Researcher Award 

Associate Professor, at Ankara Yildirim Beyazit University, Turkey.

Dr. Nimet Yildirim Tirgil is an Assistant Professor in Biomedical Engineering at Ankara Yıldırım Beyazıt University. She specializes in biosensor technology, nanomaterials, and electrochemical analysis for environmental and medical applications. With a strong background in bioengineering and biochemistry, Dr. Yildirim Tirgil has led multiple research projects funded by TÜBİTAK and TÜSEB, focusing on biosensing platforms for rapid diagnostics, including COVID-19 antibody detection, tumor DNA analysis, and neurotransmitter monitoring. Her work has led to several patents, high-impact publications, and collaborations in the field of biosensor innovation. Dr. Yildirim Tirgil is committed to advancing analytical chemistry and nanotechnology to develop cutting-edge biosensing solutions.

Professional Profile

Scopus

ORCID

Google Scholar

🎓 Education

Dr. Yildirim Tirgil holds a Ph.D. in Bioengineering from Northeastern University (2016), where she developed next-generation biosensor systems for environmental water quality monitoring under the supervision of Prof. April Z. Gu. She earned her M.Sc. in Biochemistry from Ege University (2009), focusing on bacterial sensors and nanomaterial-modified electrodes, and completed her B.Sc. in Biochemistry (2007) from the same university. Her academic journey has equipped her with interdisciplinary expertise in bioengineering, nanotechnology, and analytical chemistry, enabling her to contribute significantly to biosensor research and development.

💼 Experience

Dr. Yildirim Tirgil has been an Associate Professor at Ankara Yıldırım Beyazıt University since 2018, leading research in biomedical engineering. She has extensive experience in supervising graduate theses, mentoring students in biosensor technology, and developing nanomaterial-based detection systems. She has served as Principal Investigator on numerous national and international research projects, including the development of electrochemical biosensors for detecting environmental pollutants, disease biomarkers, and bioterrorism agents. Her collaborations extend to government-funded research programs and industrial partnerships, advancing biosensing technologies for healthcare, food safety, and environmental monitoring.

🔬 Research Interests

Dr. Yildirim Tirgil’s research focuses on biosensor development, nanotechnology, and electrochemical analysis for medical diagnostics and environmental applications. Her primary interests include:

  • Aptamer-based biosensors for disease biomarker detection.

  • Electrochemical sensing platforms for rapid pathogen and toxin identification.

  • Nanomaterial-modified electrodes for enhanced biosensing performance.

  • Wearable and paper-based biosensors for real-time health monitoring.

  • Smart biosensor integration for food safety and environmental protection.

Her interdisciplinary research integrates biotechnology, analytical chemistry, and materials science to develop innovative biosensing solutions with high sensitivity and specificity.

🏆 Awards & Recognitions

Dr. Yildirim Tirgil has received multiple awards for her groundbreaking work in biosensor technology, including:

  • Best Research Paper Award in Analytical Chemistry (2024).

  • TÜBİTAK Research Excellence Award for contributions to biosensor innovation (2023).

  • Outstanding Young Scientist Award in Biomedical Engineering (2022).

  • Top Cited Researcher Recognition in ACS Applied Polymer Materials (2025).

  • Innovation Award for the development of a smartphone-assisted biosensor system (2021).

Her achievements highlight her impact on sensor technology and analytical diagnostics, making her a leading figure in biosensing research.

📚 Top Noted Publications

Dr. Yildirim Tirgil has published extensively in high-impact journals. Some of her key publications include:

  • Sanattalab, E., Ayni, E., Kaya, K., & Yildirim‐Tirgil, N. (2025).
    Applications of Magnetic Nanocomposites in Lateral Flow Assays.
    Journal: ChemistrySelect
    Summary: This paper explores the use of magnetic nanocomposites in lateral flow assays, enhancing sensitivity and specificity for rapid diagnostic applications.

  • Yildirim-Tirgil, N., Ayni, E., & Kaya, K. (2025).
    Electrochemical Detection of SARS-CoV2 IgG Using Magnetic Nanocomplexes.
    Journal: Journal of Nanoparticle Research
    Summary: The study presents a novel electrochemical biosensor utilizing magnetic nanocomplexes for detecting SARS-CoV-2 IgG antibodies, providing a potential point-of-care diagnostic solution.

  • Avci, M. B., Kocer, F., Yildirim-Tirgil, N., et al. (2025).
    Optofluidic Guided-Mode Resonance Platform for Binding Kinetics.
    Journal: IEEE Sensors Journal
    Summary: This research introduces an optofluidic guided-mode resonance platform for real-time analysis of biomolecular interactions, focusing on binding kinetics measurements.

  • Yildirim-Tirgil, N., et al. (2025).
    Development of a Polypyrrole–Chitosan Nanofiber-Based Enzymatic Biosensor.
    Journal: ACS Applied Polymer Materials
    Summary: The paper discusses the fabrication and characterization of an enzymatic biosensor using polypyrrole–chitosan nanofibers for enhanced sensitivity in biochemical detection.

  • Didarian, R., Ozbek, H. K., Ozalp, V. C., Erel, O., & Yildirim-Tirgil, N. (2024).
    Enhanced SELEX Platforms for Aptamer Selection.
    Journal: Molecular Biotechnology
    Summary: The study proposes improvements in SELEX (Systematic Evolution of Ligands by EXponential Enrichment) methodologies for more efficient aptamer selection, applicable in biosensing and therapeutics.

  • Cuhadar, S. N., Durmaz, H., & Yildirim-Tirgil, N. (2024).
    Multi-Detection of Serotonin and Dopamine via Electrochemical Aptasensor.
    Journal: Chemical Papers
    Summary: This paper introduces an electrochemical aptasensor for the simultaneous detection of serotonin and dopamine, contributing to advancements in neurochemical monitoring.

  • Sahin, S., & Tirgil, N. Y. (2024).
    Circulating Tumor DNA (ctDNA) Detection via Electrochemical Biosensing.
    Journal: MANAS Journal of Engineering
    Summary: The study develops an electrochemical biosensor for detecting circulating tumor DNA (ctDNA), offering potential applications in early cancer diagnostics.

Conclusion

Dr. Nimet Yildirim Tirgil is a highly qualified and competitive candidate for the Best Researcher Award. Her groundbreaking work in biosensors, nanomaterials, and biomedical applications, along with strong project leadership and patent contributions, position her as a leader in her field. Enhancing international collaborations and industry partnerships could further elevate her candidacy.

Gang Li | Mechanical Engineering | Best Researcher Award

Assoc. Prof. Dr. Gang Li | Mechanical Engineering | Best Researcher Award

Associate professor, Northeast Electric Power University, China

🔬 Assoc. Prof. Dr. Gang Li is a distinguished researcher in mechanical manufacturing and automation at Northeast Electric Power University. He holds a PhD from South China University of Technology and has led numerous projects in metal material processing, mechanical equipment development, and metrological verification. His expertise includes Ti-6Al-4V material processing, intelligent metering systems, and unmanned technology research. He has authored 10+ SCI papers, holds multiple patents, and has contributed to national and provincial research projects. Passionate about innovation and automation, he actively explores advancements in mechanical engineering. ✨🔧📡

 

Publication Profile

Scopus

🎓 Educational Background

Assoc. Prof. Dr. Gang Li has a strong academic foundation in mechanical engineering and automation. He earned his PhD (2013-2017) 🎓 from South China University of Technology, specializing in Mechanical Manufacturing and Automation. Prior to this, he completed a Master’s degree (2010-2013) 🏅 at Changchun University of Science and Technology, focusing on Machinery Manufacturing and Automation. His first Master’s degree (2004-2008) 🏆 was from Inner Mongolia University of Science and Technology, specializing in Mechanical Design, Manufacture, and Automation. His extensive academic training has contributed significantly to his expertise in mechanical innovation and research. 🔧📡

🔬 Project Experience

Assoc. Prof. Dr. Gang Li has contributed to multiple mechanical and automation research projects. His work on Ti-6Al-4V cutting and surface strengthening technology 🏗️ optimized machining parameters and tools for titanium alloy casing. He played a key role in the Guangdong Provincial Energy Metering and Verification Center ⚡, overseeing equipment installation and debugging. His research on intelligent, unmanned metrological verification 🏭 focused on fault detection and automation. As the principal investigator of the intelligent metering turnover cabinet 📟, he developed a system for efficient energy meter management, enhancing automation and operational efficiency. 🔧🚀

🔬 Research Focus

Assoc. Prof. Dr. Gang Li specializes in mechanical engineering 🏭, with a focus on materials processing and surface strengthening technologies. His research explores electropulsing-assisted ultrasonic strengthening ⚡🔊, particularly its impact on fatigue properties of Ti–6Al–4V alloys 🏗️. He also investigates fretting friction characteristics 🔧, optimizing heat-treated alloys for enhanced durability. His contributions in metallurgical and materials science 🏺 are crucial for improving the performance and lifespan of structural components in aerospace ✈️, automotive 🚗, and energy sectors ⚡. With multiple publications and citations, his work advances manufacturing and materials innovation. 🚀

Publication Top Notes

Effect of Electropulsing-Assisted Ultrasonic Strengthening on Fatigue Properties of HIP Ti–6Al–4V Alloy

Study on surface fretting friction properties of heat-treated HIP Ti-6Al-4 V alloy after heating-assisted ultrasonic surface strengthening