Qian Sun | Materials Science | Young Scientist Award

Dr. Qian Sun | Materials Science | Young Scientist Award

Postdoc, Northwestern Polytechnical University, China

Dr. Qian Sun is a Postdoctoral researcher at Northwestern Polytechnical University, specializing in Mechanics of Materials and Shape Memory Alloys. He earned his Ph.D. from Hiroshima University, Japan, in 2024, following a Master’s degree in the same field. His research focuses on Martensitic Phase Transformation, Impact Dynamics, and Thermomechanical Training of materials. Dr. Sun has published widely in high-impact journals and contributed to advancements in the performance of iron-based shape memory alloys. He has also received prestigious awards, including the China Scholarship Council and JASSO Scholarship. 📚🔬📈

 

Publication Profile

Scopus

Orcid

Google Scholar

Work Experience

Since April 2024, Dr. Qian Sun has been serving as a Postdoctoral Researcher at the School of Civil Aviation at Northwestern Polytechnical University. In this role, he continues his pioneering work in Mechanics of Materials, focusing on Shape Memory Alloys and Impact Dynamics. Dr. Sun’s research contributes to advancing the field of civil aviation by enhancing the performance and reliability of materials used in critical applications. His position allows him to combine his expertise in materials science with practical applications in engineering, propelling innovative developments in aerospace technology. 🔧🚀

 

Educational Background

Dr. Qian Sun’s academic journey is marked by a strong foundation in Materials Science and Engineering. He completed his Bachelor’s degree at Nanjing Forestry University, China (2014-2018). He then pursued advanced studies at Hiroshima University, Japan, where he earned his Master’s (2019-2021) and Doctoral degrees (2021-2024) in Mechanics of Materials from the Graduate School of Engineering and the Graduate School of Advanced Science and Engineering. Throughout his academic career, Dr. Sun’s work focused on the development and characterization of Shape Memory Alloys and other advanced materials. 🔬🌍

 

Research Interests

Dr. Qian Sun’s research spans multiple advanced topics in Materials Science. His primary focus is on the Mechanics of Materials, where he explores areas such as Engineering Mechanics and Experimental Mechanics to improve material behavior under various conditions. His work on Impact Dynamics involves studying how materials respond to dynamic forces, while his expertise in Shape Memory Alloys and Martensitic Phase Transformation seeks to enhance material recovery and performance. Additionally, Dr. Sun investigates Materials Characterization and Thermomechanical Training Treatments, aiming to advance the development of high-performance materials for modern engineering applications. 🛠️⚙️

 

Teaching Experience

Dr. Qian Sun has gained valuable teaching experience in the field of Computational Solid Mechanics. From 2021, he served as a Teaching Assistant, supporting students in mastering complex computational methods used in solid mechanics. In 2022, he took on the role of Teaching Fellow, where he not only continued his teaching in computational solid mechanics but also incorporated Japanese language lessons, enabling students to navigate technical content in both English and Japanese. His diverse teaching roles reflect his commitment to educating the next generation of engineers and researchers. 🏫💻

 

Awards and Recognitions

Dr. Qian Sun’s exceptional academic achievements have been recognized through prestigious awards. In 2021, he was honored with the China Scholarship Council award, supporting his advanced studies and research. Prior to that, in 2020, he received the Japan Student Services Organization (JASSO) Scholarship, enabling him to further pursue his academic interests in Japan. These awards underscore Dr. Sun’s commitment to excellence in research and education, reflecting his drive for innovation in materials science and engineering. 🌏🎓

 

Research Focus

Dr. Qian Sun’s research focuses on Mechanics of Materials and Engineering Mechanics, with a particular interest in Shape Memory Alloys (SMAs) and Martensitic Phase Transformation. His work explores the impact dynamics of SMAs, especially in the context of thermo-mechanical treatments and cyclic loading. Dr. Sun has made significant contributions to understanding the shape recovery behavior and deformation characteristics of Fe-Mn-Si alloys. His studies also include advanced materials characterization methods, contributing to the development of additively manufactured SMAs. 🌡️⚙️ His work enhances applications in structural integrity and material performance across engineering fields.

 

Publication Top Notes

  • “Effect of impact deformation on shape recovery behavior in Fe-Mn-Si shape memory alloy under shape memory training process with cyclic thermo-mechanical loading” – Cited by 16, 2021 🌡️
  • “Bending fracture strength of the pipe joint using iron-based shape memory alloy (Fe-SMA) subjected to different expansion methods at various deformation rates” – Cited by 13, 2022 🔧
  • “Effect of deformation rate on the axial joint strength made of Fe-SMA” – Cited by 11, 2022 🏗️
  • “Whole martensitic transformation process in Fe–Mn–Si–Cr shape memory alloy by improved characterization of volume resistivity” – Cited by 7, 2023 🔬
  • “An Evaluation on Strain Rate Sensitivity of Phase Transformation in Fe-28Mn-6Si-5Cr Shape Memory Alloy during Loading and Heating Processes by Measuring Volume Resistivity” – Cited by 1, 2019 ⚙️
  • “An improvement of shape memory effect in Fe-Mn-Si shape memory alloy by training process under impact tensile loading”- 2024 🔄
  • “A Review of Additively Manufactured Iron-Based Shape Memory Alloys” – 2024 🖨️

Tayyaba Ghani | Materials Science | Best Researcher Award

Tayyaba Ghani | Materials Science | Best Researcher Award

Dr Tayyaba Ghani, Pakistan Institute of Engineering and Aplplied Sciences, Pakistan

Dr. Tayyaba Ghani: A Strong Contender for the Best Researcher Award

Publication  Profile

Google Scholar

Education

Dr. Tayyaba Ghani has an impressive academic background with a PhD in Materials and Surface Engineering from the National University of Sciences and Technology, Pakistan. She holds an MS in Materials Engineering from PIEAS, Islamabad, and an MSc in Physics from QAU, Islamabad, along with a B.Ed. from AIOU, Islamabad.

Professional Experience

Dr. Ghani has been serving as Principal Scientist at DMME, PIEAS, since 2016. Prior to this, she held roles as Senior Scientist (2007-2016) and Junior Scientist (2005-2007), showcasing a rich career in scientific research and leadership.

Awards and Honours

She has received numerous prestigious awards, including the 2017 Peking University Research Scholarship and the 2013 NUST University Fellowship. In 2005, she earned both the Best Thesis Certificate and a Gold Medal for her first position in MS Materials Engineering, with a PIEAS Fellowship supporting her studies.

Teaching Experience

Dr. Ghani has contributed significantly to academia, teaching courses like Structure and Properties of Materials, Corrosion and its Control, and Characterization of Materials at the MS and BS levels in Materials Engineering.

Research Experience

Her research focuses on nanomaterials, particularly nanostructured semiconductor oxides, and their applications in photovoltaics and photocatalysis. She is also known for her work on catalytic applications of nanomaterials.

Research Supervision

Dr. Ghani has supervised 7 PhD and 10 MS students, reflecting her expertise in guiding advanced research.

Publications

Dr. Ghani has co-authored numerous impactful research papers, with her latest publications in Solar Energy and Materials Chemistry and Physics in 2024, focusing on dye-sensitized solar cells and TiO2 nanoparticles.

Talks Delivered

Dr. Ghani has presented her work at various esteemed forums, including the 6th Conference on Emerging Materials and Processes organized by NUST and an international workshop at the National Centre for Physics, Islamabad.

Trainings Received

Dr. Ghani has continuously enhanced her professional skills through various training programs, such as the Professional Competency Enhancement Program for Teachers by HEC and a course on activated carbons at PIEAS.

Publication Top notes

Band structure tuning of ZnO/CuO composites for enhanced photocatalytic activity

Microfluidic platform for encapsulation of plant extract in chitosan microcarriers embedding silver nanoparticles for breast cancer cells

Corrosion behaviour of zinc–nickel alloy coatings electrodeposited in additive free chloride baths

Formation of carbon nanostructures on nickel acetate alcogel by CVD method and its OER electrocatalytic study in alkaline media

Highly ordered combined structure of anodic TiO2 nanotubes and TiO2 nanoparticles prepared by a novel route for dye-sensitized solar cells

Fabrication of self-branched TiO2 nanotubes by anodization method, ordering and crystallinity

Effect of Processing Temperature on the Morphology and Crystal Structure of Anodic TiO2 Nanotubes

Comparative study of microscale and macroscale technique for encapsulation of Calotropis gigantea extract in metal-conjugated nanomatrices for invasive ductal …

Conclusion

Dr. Tayyaba Ghani’s remarkable achievements in education, research, supervision, and academia make her a strong candidate for the Best Researcher Award. Her extensive work in nanomaterials and solar energy systems, alongside her recognized teaching and leadership, highlight her as a prominent figure in the field of materials engineering.

Thi Hong Nga Pham | Materials Science | Women Researcher Award

Assoc Prof Dr. Thi Hong Nga Pham | Materials Science | Women Researcher Award

Head of department at Ho Chi Minh City University of Technology and Education, Vietnam

Assoc. Prof. Dr. Pham Thi Hong Nga is a dedicated lecturer in the Welding and Metal Technology Department at Ho Chi Minh City University of Technology and Education, Vietnam. With a solid educational background, including a doctorate in Materials Processing Engineering from Kunming University of Science and Technology, she specializes in polymers, welding, laser cladding, and additive manufacturing. Dr. Nga has an impressive publication record in reputable journals, showcasing her commitment to advancing knowledge in her field. Her academic leadership experience includes serving as head of her department and deputy dean, reflecting her influence in shaping academic programs. Passionate about bridging theoretical research with practical applications, she aims to contribute significantly to technological advancements in engineering.

Publication profile

Scopus Profile

Educational Background

Assoc. Prof. Dr. Pham Thi Hong Nga has a strong educational background, having completed her Bachelor’s and Master’s degrees at the Ho Chi Minh City University of Technology and Education, where she studied Industrial Technology and Mechanical Engineering Technology, respectively. She later earned her doctorate in Materials Processing Engineering from Kunming University of Science and Technology in China. Her academic journey spans from 2001 to 2013, during which she worked under notable supervisors, including Ms. Nguyen Duc Sam for her Bachelor’s, Prof. Dr. Hoang Trong Ba for her Master’s, and Prof. Dr. Jiang Ye Hua for her doctoral studies. This comprehensive educational foundation has equipped her with the knowledge and skills necessary for her research and teaching roles in the field of mechanical engineering.

Teaching and Research Experience

Assoc. Prof. Dr. Pham Thi Hong Nga has a robust teaching and research background in the fields of welding and metal technology, with a focus on materials science and engineering. As a lecturer at the Ho Chi Minh City University of Technology and Education, she teaches various courses, including Materials Science, Metal Technology, and 3D Printing and Additive Manufacturing, demonstrating her expertise in both theoretical concepts and practical applications. Her research interests encompass a wide range of topics, such as polymer blends, laser cladding, and additive manufacturing techniques. Dr. Hong Nga has an impressive publication record, with numerous articles in reputable journals that contribute significantly to the understanding of material properties and processing techniques. Additionally, she has held several leadership roles within the academic institution, including department head and deputy dean, further underscoring her commitment to fostering academic excellence and innovation in engineering education and research.

Publication Top Notes

  • Publication Title: Microstructure and mechanical properties of TiC/Co composite coating by laser cladding on H13 steel surface
    Authors: Pham, T.H.N., Zhang, X., Wang, C., Liu, H., Jiang, Y.
    Journal: Hanjie Xuebao/Transactions of the China Welding Institution
    Year: 2013
    Citations: 10
  • Publication Title: Microstructures and high-temperature wear behaviors of Co/TiC laser coatings on die steel
    Authors: Pham, T.H., Liu, H.-X., Zhang, X.-W., Wang, C.-Q., Jiang, Y.-H.
    Journal: Guangxue Jingmi Gongcheng/Optics and Precision Engineering
    Year: 2013
    Citations: 5

Conclusion

Assoc. Prof. Dr. Pham Thi Hong Nga exemplifies the qualities of a distinguished researcher. Her strong academic background, diverse research interests, and significant contributions to the field position her as a suitable candidate for the Best Researcher Award. By addressing the identified areas for improvement, she could further amplify her impact in academia and industry, solidifying her legacy as a leader in the field of Mechanical Engineering and Materials Science.

Zhihai Ke | Materials Science Award | Best Researcher Award

Prof Dr. Zhihai Ke | Materials Science Award | Best Researcher Award

Prof Dr. Zhihai Ke, The Chinese University of Hong Kong, Shenzhen, China

 

Prof. Dr. Zhihai Ke is an Assistant Professor and the Director of the Undergraduate Chemistry Programme at The Chinese University of Hong Kong, Shenzhen. He earned his Ph.D. in Chemistry from The Chinese University of Hong Kong in 2012, following a B.Sc. in Applied Chemistry from Sun Yat-Sen University in 2008. He completed postdoctoral research at the National University of Singapore. Prof. Ke specializes in catalysis, organic synthesis, and material chemistry, contributing extensively to journals like ACS Catalysis, Angewandte Chemie, and Small. His work often explores metal-organic frameworks and single-atom catalysts. He holds an ORCID ID and is an active scholar on Google Scholar.

Publication profile

Orcid

Google scholar

Academic Qualifications 🎓

Prof. Dr. Zhihai Ke’s academic journey began with a B.Sc. in Applied Chemistry from Sun Yat-Sen University (2004-2008), followed by a Ph.D. in Chemistry from The Chinese University of Hong Kong (2008-2012). He then advanced his career as a Postdoctoral Fellow in the Department of Chemistry at the National University of Singapore from October 2012 to July 2015. Subsequently, he served as a Research Assistant Professor at The Chinese University of Hong Kong until July 2020. Currently, he is the Director of the Undergraduate Chemistry Programme and an Assistant Professor at the School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, where he continues to contribute to the field of chemistry. 🌟

 

Awards and Recognition 🏆

Prof. Dr. Zhihai Ke has received several prestigious awards throughout his career, highlighting his contributions to the field of chemistry. In 2018, he was honored with the Asian Core Program Lectureship Award (Asia核心项目讲座奖), recognizing his excellence in academic presentations. In 2021, he was designated as a Shenzhen Overseas High-Caliber Personnel (Level C) and named a Presidential Young Scholar (校长青年学者), showcasing his impactful research. He further distinguished himself in 2023 with the Open Science Excellent Author Program award, followed by the 2023 Excellent Performance Grant, celebrating his outstanding achievements in academia and research. 🌟

 

Research Focus Areas 🔬

Prof. Dr. Zhihai Ke’s research primarily revolves around catalysis and synthetic chemistry, focusing on innovative methodologies for asymmetric synthesis and reaction mechanisms. His notable contributions include the development of catalytic processes such as bromoetherification, bromocyclization, and enantioselective transformations using various Lewis acids and base catalysts. Additionally, his work on peptidomimetics and organogels showcases his interest in designing broad-spectrum inhibitors, particularly against viral proteases. Prof. Ke’s research also emphasizes the exploration of novel materials, including metallogels and nanostructures, highlighting a commitment to advancing green chemistry and sustainable practices. 🌱✨

 

Publication Top Notes  

  • Catalytic Asymmetric Bromoetherification and Desymmetrization of Olefinic 1,3-Diols with C2-Symmetric Sulfides – Cited by: 182 (2014) 📄
  • Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases – Cited by: 105 (2013) 🦠
  • A Platinum(II) Terpyridine Metallogel with an L‐Valine‐Modified Alkynyl Ligand: Interplay of Pt⋅⋅⋅Pt, π–π and Hydrogen‐Bonding Interactions – Cited by: 96 (2013) 💎
  • Applications of selenonium cations as Lewis acids in organocatalytic reactions – Cited by: 90 (2018) ⚗️
  • Conformational and supramolecular properties of main chain and cyclic click oligotriazoles and polytriazoles – Cited by: 87 (2010) 📚
  • Lewis base catalyzed stereo‐and regioselective bromocyclization – Cited by: 80 (2017) 🔄
  • Electrochemical self-assembly of ZnO nanoporous structures – Cited by: 80 (2007) ⚡
  • Desymmetrizing enantio-and diastereoselective selenoetherification through supramolecular catalysis – Cited by: 77 (2018) 🧪
  • Electrochemical synthesis of orientation-ordered ZnO nanorod bundles – Cited by: 61 (2007) 🌐
  • Lewis basic sulfide catalyzed electrophilic bromocyclization of cyclopropylmethyl amide – Cited by: 48 (2015) ⚙️

Conclusion

Prof. Dr. Zhihai Ke is highly suitable for the Best Researcher Award. His achievements, leadership, and multiple prestigious awards mark him as an outstanding researcher in the field of chemistry.