Taek Hyeon Kim | Organic Chemistry | Best Researcher Award

Prof Dr. Taek Hyeon Kim | Organic Chemistry | Best Researcher Award

Prof Dr. Taek Hyeon Kim, Chonnam National University, South Korea

Publication profile

Academic and Professional Background

Prof. Dr. Taek Hyeon Kim earned his Ph.D. from Korea Advanced Institute of Science and Technology (KAIST). He furthered his expertise through a postdoctoral course at UC Berkeley, USA, and worked with SK Innovation in Korea. He served as the Dean of the College of Engineering at Chonnam National University. Recognized as one of the top 30 researchers by the National Research Foundation of Korea in 2002, he has published over 100 SCI papers and holds 8 Korean patents. He is a member of the Korean Chemical Society, The Polymer Society of Korea, and The Korean Society of Industrial and Engineering Chemistry.

Areas of Research

Prof. Kim’s research focuses on organocatalysis, organic synthesis, and organic synthetic methods. He has extensively studied the development of novel synthetic methodologies and chiral auxiliaries, as well as solid-phase synthesis and molecular recognition. His work contributes significantly to asymmetric reactions and the broader field of organic chemistry.

Contributions

Prof. Kim’s 30-year research career has been marked by pioneering work in organic synthetic methodologies. His initial research aimed at creating novel organic phosphorus compounds for Wittig reactions. During his postdoctoral tenure in Henry Rapoport’s group, he worked on synthesizing important organic compounds using amino acids. At Chonnam National University, he has continued to advance research on chiral auxiliaries, solid-phase synthesis, molecular recognition, and organic catalysts for asymmetric reactions.

Publication Top Notes

  • Synthesis of ethyl 3-cyano-2-methylcinnamates and 3-cyano-2-methylcinnamonitriles from the Baylis–Hillman acetates
    YM Chung, JH Gong, TH Kim, JN Kim
    Tetrahedron Letters 42 (51), 9023-9026
    📚 852001
  • Melt grafting of maleimides having hindered phenol antioxidant onto low molecular weight polyethylene
    TH Kim, DR Oh
    Polymer degradation and stability 84 (3), 499-503
    📚 722004
  • Melt free‐radical grafting of hindered phenol antioxidant onto polyethylene
    TH Kim, HK Kim, DR Oh, MS Lee, KH Chae, S Kaang
    Journal of applied polymer science 77 (13), 2968-2973
    📚 692000
  • Synthesis of 1, 3-disubstituted naphthalenes from the Baylis–Hillman acetates with the aid of manganese (III) acetate
    YJ Im, KY Lee, TH Kim, JN Kim
    Tetrahedron letters 43 (26), 4675-4678
    📚 672002
  • Regioselective construction of polysubstituted pyridine ring from Baylis–Hillman adducts via sequential introduction of tosylamide, Michael reaction, aldol condensation, and …
    MJ Lee, TH Kim, JN Kim
    Tetrahedron letters 46 (50), 8799-8803
    📚 572005
  • Efficient synthesis of 2-methylaminothiazolines via Mitsunobu reaction of N-(2-hydroxyethyl)-N′-methyl-thioureas
    TH Kim, MH Cha
    Tetrahedron letters 40 (16), 3125-3128
    📚 541999
  • Regiocontrolled cyclization reaction of N-(2-hydroxyethyl) ureas by transfer of activation: one-pot synthesis of 2-imidazolidinones
    TH Kim, GJ Lee
    The Journal of organic chemistry 64 (8), 2941-2943
    📚 481999
  • Pd-Mediated synthesis of 7H-benzo [3, 4] azepino [1, 2-a] indole-6-carboxylic acid derivatives from indole-containing Baylis–Hillman adducts
    HS Lee, SH Kim, TH Kim, JN Kim
    Tetrahedron Letters 49 (11), 1773-1776
    📚 472008
  • Regioselective synthesis of polysubstituted phenol derivatives from Baylis–Hillman adducts via [3+ 3] annulation strategy
    SJ Kim, TH Kim, JN Kim
    Tetrahedron letters 47 (35), 6315-6319
    📚 452006
  • A mild cyclodesulfurization of N-(2-hydroxyethyl)-N′-phenylthioureas to 2-phenylamino-2-oxazolines using TsCl/NaOH
    TH Kim, N Lee, GJ Lee, JN Kim
    Tetrahedron 57 (33), 7137-7141
    📚 412001
  • A water‐developable negative photoresist based on the photocrosslinking of N‐phenylamide groups with reduced environmental impact
    KH Chae, GJ Sun, JK Kang, TH Kim
    Journal of applied polymer science 86 (5), 1172-1180
    📚 372002
  • S-Benzyl isothiouronium chloride as a recoverable organocatalyst for the direct reductive amination of aldehydes
    QPB Nguyen, TH Kim
    Tetrahedron letters 52 (39), 5004-5007
    📚 342011


Conclusion

Prof. Dr. Taek Hyeon Kim’s extensive experience, impactful research contributions, and significant academic achievements make him a strong candidate for the Research for Best Researcher Award. His innovative work in organic synthesis and catalytic methods aligns well with the award’s criteria, highlighting his excellence and influence in the field.

 

Deepshikha Gupta | Organic chemistry | Best Researcher Award

Prof. Deepshikha Gupta | Organic chemistry | Best Researcher Award

Professor, Amity Institute of Applied Sciences, Amity University Noida, India

Deepshikha Gupta is a distinguished academic and researcher in the field of Chemistry, currently serving as a Professor at Amity University, Noida, Uttar Pradesh, India, since March 2023. She has been a faculty member at Amity University since August 2006, where she initially held the position of Associate Professor.

 

Publication Profile

Strengths for the Award:

  1. Extensive Research Experience: Dr. Deepshikha Gupta has a prolific research background, with numerous publications in high-impact journals and contributions to various books. Her research focuses on cutting-edge topics like natural products, nanomaterials, and their applications in medicine, which are highly relevant and impactful in current scientific discourse.
  2. Multidisciplinary Expertise: Her work spans across multiple disciplines, including chemistry, nanotechnology, and materials science, demonstrating her versatility and ability to contribute to diverse fields.
  3. International Recognition: Dr. Gupta’s research is widely recognized internationally, as evidenced by her numerous citations, multiple Scopus Author IDs, and extensive publication history in reputed journals and conferences.
  4. Sustainability Focus: Her recent work on sustainable approaches to nanoparticle synthesis highlights her commitment to addressing global challenges like environmental sustainability, which is increasingly valued in contemporary research.

Areas for Improvement:

  1. Industry Collaboration: While her academic achievements are significant, there is limited evidence of direct collaboration with industry, which could enhance the practical application and commercialization of her research findings.
  2. Impact on Policy: Her research could benefit from a more pronounced impact on policy-making, particularly in areas like environmental protection and public health, where her work on nanomaterials and natural products could provide valuable insights.
  3. Public Engagement: Increasing her involvement in public science communication and outreach activities could help bridge the gap between her research and societal understanding, thereby amplifying the impact of her work.

 

🎓 Education:

Dr. Deepshikha Gupta earned her Ph.D. in Chemistry from Jai Narain Vyas University, Jodhpur, Rajasthan, India, completing her degree in August 2000.

🏢  Experience:

Dr. Gupta has an extensive academic career at Amity University, Noida, Uttar Pradesh, where she has served as an Associate Professor of Chemistry since August 2006. Recently, in March 2023, she was promoted to the position of Professor at the same institution, where she continues to contribute significantly to the field of chemistry.

🔬 Research Interests:

Dr. Gupta’s research focuses on natural products, antioxidant potential, antimicrobial activity, and metal oxide nanoparticles. Her work has made substantial contributions to these areas, emphasizing sustainable and green chemistry approaches.

📚 Publications:

Dr. Gupta has an impressive portfolio of scholarly work, including numerous journal articles and book chapters. Some of her recent publications include:

“Rethinking Nanoparticle Synthesis: A Sustainable Approach vs. Traditional Methods” in Chemistry – An Asian Journal (2024).

“Industrial Applications of Nanoparticle Immobilized Enzymes” in Nano-Enzyme Incorporated Particles (2024).

“Coumarin—Synthetic Methodologies, Pharmacology, and Application as Natural Fluorophore” in Topics in Current Chemistry (2024).

“A Review on Hydrogels for Smart Drug Delivery Systems and their Mathematical Modelling” in Current Materials Science (2024).

“Synthesis of Gold Nanoparticles and Their Applications in Cancer Therapy” in Biointerface Research in Applied Chemistry (2024).

 

Conclusion:

Dr. Deepshikha Gupta is a strong candidate for the Best Researcher Award due to her extensive research contributions, multidisciplinary expertise, and international recognition. Her work on sustainable nanoparticle synthesis and natural products is particularly commendable. However, she could further strengthen her candidacy by enhancing industry collaborations, influencing policy, and engaging with the public to maximize the societal impact of her research. Overall, she is a highly deserving candidate for the award.

 

Manijeh nematpour | organic chemistry | Best Researcher Award

Dr. Manijeh nematpour | organic chemistry | Best Researcher Award

Dr. Manijeh nematpour, Farhangian university, tehran, iran

Dr. Manijeh Nematpour, an accomplished academic, is an Assistant Professor at Farhangian University’s Department of Chemistry Education in Tehran, Iran. She holds a Postdoctoral degree in Pharmaceutical Chemistry from Shahid Beheshti University and completed her Ph.D. in Organic Chemistry at Tarbiat Modares University. Her research focuses on organic synthesis, particularly in heterocyclic and pharmaceutical chemistry. With a robust academic background spanning from Mazandaran University to her current role, Dr. Nematpour is recognized for her contributions to the field, evident in her publications and scholarly activities. 🎓🔬

 

Publication Profile

Scopus

Google Scholar

🎓 Education

Dr. Nematpour earned her Postdoctoral degree in Pharmaceutical Chemistry (2016-2020) from Shahid Beheshti University of Medical Sciences, Tehran, supervised by Sayyed Abass Tabataba’i. She completed her Ph.D. in Organic Chemistry (2011-2014) and M.Sc. in Organic Chemistry (2008-2010) at Tarbiat Modares University, Tehran, under the guidance of Issa Yavari. Her B.Sc. in Chemistry (2004-2008) was obtained from Mazandaran University, specializing in Pure Chemistry.

 

Research Focus

Dr. Manijeh Nematpour’s research primarily focuses on organic synthesis, particularly in the development of novel methodologies for creating functionalized heterocyclic compounds. Her work spans various aspects of pharmaceutical chemistry, including the synthesis of pyrazoles, pyrimidines, azet-2-imines, and other complex molecular structures using copper-catalyzed reactions and multicomponent reactions. These contributions are significant for their potential applications in drug discovery and development. Dr. Nematpour’s expertise lies in leveraging organic chemistry principles to design and synthesize compounds with potential pharmacological activities, contributing to advancements in medicinal chemistry. 🔬🧪

 

Publication Top Notes

  • Ph3P-mediated one-pot synthesis of functionalized 3,4-dihydro-2H-1,3-thiazines from N,N′-dialkylthioureas and activated acetylenes in water 📚 73 citations (2010)
  • Copper-catalyzed one-pot synthesis of tetrasubstituted pyrazoles from sulfonyl azides, terminal alkynes, and hydrazonoyl chlorides 📚 51 citations (2012)
  • Copper-catalyzed tandem synthesis of tetrasubstituted pyrimidines from alkynes, sulfonyl azides, trichloroacetonitrile, and tetramethylguanidine 📚 29 citations (2013)
  • Tandem synthesis of highly functionalized pyrazole derivatives from terminal alkynes, sulfonyl azides, diethyl azadicarboxylate, and sodium arylsulfinates 📚 29 citations (2012)
  • Synthesis of Functionalized Tetrahydro‐4‐oxoindeno[1,2‐b]pyrroles from Ninhydrin, Acetylenedicarboxylates, and Primary Amines 📚 29 citations (2010)
  • Copper-Catalyzed One-Pot Synthesis of Functionalized 1, 4-Dihydroazete Derivatives from Sulfonyl Azides, Terminal Alkynes, and Tetramethylguanidine 📚 26 citations (2012)
  • One-pot synthesis of 2, 6-diamino-4-sulfonamidopyrimidines from sulfonyl azides, terminal alkynes and cyanoguanidine 📚 26 citations (2012)
  • Design, synthesis and anti-diabetic activity of novel 1, 2, 3-triazole-5-carboximidamide derivatives as dipeptidyl peptidase-4 inhibitors 📚 22 citations (2020)
  • Copper-catalyzed tandem synthesis of highly functionalized bisamidines 📚 21 citations (2013)
  • A copper-catalyzed synthesis of functionalized quinazolines from isocyanides and aniline tri-and dichloroacetonitrile adducts through intramolecular C–H activation 📚 18 citations (2017)

Najmeh Nowrouzi | Organic Chemistry Award | Best Researcher Award

Assoc Prof Dr. Najmeh Nowrouzi | Organic Chemistry Award | Best Researcher Award

Assoc Prof Dr. Najmeh Nowrouzi, Persian Gulf University, Iran

Dr. Najmeh Nowrouzi is an accomplished associate professor at Persian Gulf University, specializing in Organic Chemistry. She earned her Ph.D. from Shiraz University in 2008. With notable achievements including the Top Researcher awards in 2014 and 2016, her research spans phosphorus compounds, ionic liquids, and nanocompounds. Dr. Nowrouzi has a prolific publication record, contributing to numerous high-impact journals and conferences. Her work focuses on innovative chemical syntheses and catalysis, particularly involving organometallic chemistry and green chemistry approaches.

Publication profile:

Google scholar

Educational Background:

Dr. Najmeh Nowrouzi has had an extensive and rigorous academic journey. She completed her high school education at Tohid High School in Shiraz, Iran, in 1997. Following this, she pursued a Bachelor of Science in Chemistry at Shiraz University from 1998 to 2002, then continued at the same institution to earn her Master’s in Organic Chemistry between 2002 and 2004. Dr. Nowrouzi’s commitment to her field culminated in a Ph.D. in Organic Chemistry from Shiraz University, which she completed in 2008. 🎓🔬

Awards and Honors:

Dr. Nowrouzi has been recognized for her outstanding contributions to science. She was named the top researcher of the Faculty of Sciences at Persian Gulf University in 2014 and subsequently received the prestigious accolade of being the top researcher in Bushehr Province in 2016. 🏆🏅

Research Focus:

The research focus of N. Nowrouzi primarily lies in organic synthesis and catalysis, with a strong emphasis on green chemistry. 🧪🌿 The work involves developing novel methodologies for converting various functional groups, such as alcohols, thiols, and ethers, into valuable compounds like alkyl cyanides, azides, and nitriles using triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone systems. 🔄🔬 The research also explores efficient nitration techniques under neutral conditions, novel catalysts for cross-coupling reactions, and the use of ionic liquids and biodegradable polymers for sustainable chemical processes. 🌍🔋 This work aims to advance environmentally friendly practices in chemical synthesis and catalysis. ♻️🌟

Publication Top Notes:

Wang Lijia | Organic Chemistry | Best Researcher Award

Prof. Wang Lijia | Organic Chemistry | Best Researcher Award

Professor, East China Normal University, China

👩‍🔬 Lijia Wang is a distinguished professor of organic chemistry at East China Normal University. She has made significant contributions to the field of asymmetric catalysis and the total synthesis of natural products. Her innovative approaches and research excellence have earned her a reputable position in the scientific community.

Profile

orcid

Education

🎓 Lijia Wang obtained her Ph.D. in organic chemistry from Sichuan University in 2009, under the guidance of Prof. Xiaoming Feng. Prior to that, she completed her Bachelor of Science in Chemistry at Sichuan University in 2004, with Dr. Meng Yang as her advisor.

Experience

💼 Lijia Wang is currently a professor at East China Normal University, a position she has held since February 2019. Before this, she was an associate professor at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, from August 2011 to February 2019. Her postdoctoral fellowship at Kyoto University, working with Prof. Keiji Maruoka, further solidified her expertise in organic chemistry from September 2009 to July 2011.

Research Interests

🔬 Lijia Wang specializes in asymmetric catalysis and the total synthesis of natural products. Her research focuses on the development of novel methods for transition-metal-catalyzed enantioselective tandem cyclization reactions and strategies for stereoselective divergent synthesis of polycyclic spiroindolines. Her work has led to the efficient synthesis of biologically active complex molecules and the synthesis of several natural products, including strychnine and akumicine.

Awards

🏆 Lijia Wang has been recognized for her innovative contributions to chemistry with several awards, including election to the Youth Innovation Promotion Association by the Chinese Academy of Sciences in 2017 and the JSPA Lectureship Award in Japan in 2024.

Publications Top Notes

📚 Selected Publications by Lijia Wang:

Copper Catalyzed [3 + 2] Annulation Reaction of Exocyclic Sulfonyl Enamides for the Synthesis of N,O-Spiroketal and Spiroketal – Chem. Eur. J. 2024, e202401062. [Cited by: 3 articles]

Insights into Stereoselectivity Switch in a Michael Addition-Initiated Tandem Mannich Cyclizations and Their Extension from Enamines to Vinyl Ethers – J. Am. Chem. Soc. 2023, 145, 15553–15564. [Cited by: 12 articles]

Catalytic [2+2+2] Tandem Cyclization with Alkyl Substituted Methylene Malonate Enabling Concise Total Synthesis of Four Malagasy Alkaloids – CCS Chem., 2023, 5, 124-132. [Cited by: 8 articles]

Allenamide-Initiated Cascade [2+2+2] Annulation Enabling the Divergent Total Synthesis of (-)-Deoxoapodine, (-)-Kopsifoline D and (±)-Melotenine A – Angew. Chem. Int. Ed., 2022, 61, e202207360. [Cited by: 15 articles]

Rapid Construction of Enantioenriched Benzofurochromanes by SaBOX/Copper(II) Catalyzed Enantioselective [3 + 2] Annulation of γ-Chromenes with Quinones – Org. Lett., 2022, 24, 5525-5529. [Cited by: 10 articles]

Irem kulu | Organic Chemistry | Best Researcher Award

Assoc Prof Dr. Irem kulu | Organic Chemistry | Best Researcher Award

Assoc Prof Dr. Irem kulu, Gebze Technical University, Turkey

Assoc. Prof. Dr. İrem Kulu is an accomplished organic chemist with a PhD from Yıldız Technical University, Turkey. Her expertise lies in C-C and C-N bond formation reactions of cyclic systems. With a diverse background including roles at Novartis and UMASS Amherst, she’s currently an Associate Professor at Gebze Technical University. Her research spans various projects, notably focusing on drug synthesis and bioorthogonal nanozymes. As a project coordinator and researcher, she contributes significantly to TÜBİTAK-funded initiatives. 🧪🔬 Passionate about synthesizing novel compounds, her work holds promise for advancing medicinal chemistry.

Publication Profile:

Scopus

Google Scholar

 

Education:

Dr. İrem Kulu is a dedicated scholar in organic chemistry, graduating from Yıldız Technical University in Turkey. She completed her Bachelor of Science, Master of Science, and PhD degrees from the Department of Organic Chemistry at the same institution. Her research journey began with her Bachelor’s thesis focusing on the synthesis of organic compounds. In her Master’s thesis, she explored Domino Heck type Hydroarylation reactions and new isoindolines. For her doctoral work, she delved into C-C and C-N bond formation reactions of cyclic systems. Under the guidance of Prof. Dr. Zehra Nüket Öcal Sunguroğlu, she demonstrated a keen interest in advancing organic synthesis. 🎓🔬

 

Experience :

Dr. İrem Kulu’s career spans diverse roles in academia and industry, showcasing her expertise in organic chemistry. She began as a post-doctoral researcher at Gebze Technical University, contributing to TÜBİTAK projects focused on hybrid materials synthesis. Transitioning to industry, she served as a Synthesis Chemist at Novartis, specializing in API synthesis. Her academic journey continued as an Assistant Professor at Gebze Technical University, where she eventually ascended to Associate Professor. Notably, she pursued post-doctoral research at UMASS Amherst, delving into bioorthogonal nanozymes. Her multifaceted experience reflects a commitment to advancing chemical science across academia and industry. 🔬👩‍🔬

Research Focus:

Dr. İrem Kulu’s research primarily focuses on organic synthesis and medicinal chemistry, as evidenced by her extensive publication record. She has contributed significantly to the development of novel compounds with potential pharmacological applications, including antidepressants, antimicrobials, and anticancer agents. Her work spans various synthetic methodologies, such as Domino-Heck reactions, reductive Heck reactions, and [3+2] cycloadditions, aiming to create diverse molecular architectures. Additionally, she explores the physicochemical properties and biological activities of synthesized compounds, particularly their interactions with metal ions and their potential as photosensitizers. Dr. Kulu’s research embodies a quest for innovative solutions in drug discovery and development. 💊🔬

Publication Top Notes:

  1. Domino‐Heck Reactions of Carba‐ and Oxabicyclic, Unsaturated Dicarboximides: Synthesis of Aryl‐Substituted, Bridged Perhydroisoindole Derivatives 📚 Cited by: 25 🗓️ Year: 2009
  2. The synthesis of epiboxidine and related analogues as potential pharmacological agents 📚 Cited by: 20 🗓️ Year: 2011
  3. A multidisciplinary approach to coronavirus disease (COVID-19) 📚 Cited by: 16 🗓️ Year: 2021
  4. Effects of metal ion in cationic Pd (II) and Ni (II) phthalocyanines on physicochemical and photodynamic inactivation properties📚 Cited by: 15 🗓️ Year: 2022
  5. Design, synthesis and biological evaluation of 8-aminoquinoline-1, 2, 3-triazole hybrid derivatives as potential antimicrobial agents📚 Cited by: 14 🗓️ Year: 2022
  6. Reductive Heck Reactions and [3+ 2] Cycloadditions of Unsaturated N, N’-Bistricyclic Imides
  7. Evaluation of phytochemical content, antioxidant, antimicrobial activity and DNA cleavage effect of endemic Linaria corifolia Desf. (Plantaginaceae)
  8. Synthesis of arylated norbornyl amino acid esters
  9. Hybrid materials based on pyrene-substituted metallo phthalocyanines as sensing layers for ammonia detection: Effect of the number of pyrene substituents
  10. Photodynamic Inactivation of Antibiotic-Resistant and Sensitive Aeromonas hydrophila with Peripheral Pd(II)- vs. Zn(II)-Phthalocyanines