Adam Kapelner | Statistics | Best Faculty Award

Prof. Adam Kapelner | Statistics | Best Faculty Award

Prof. Adam Kapelner, Queens College CUNY, United States

📊 Prof. Adam Kapelner is an Associate Professor of Mathematics at Queens College, CUNY, where he also directs the Undergraduate Data Science and Statistics Program. He earned his Ph.D. in Statistics from the Wharton School, University of Pennsylvania (2014). His research focuses on experimental design, randomization, machine learning, and statistical software. He has been a visiting scholar at The Technion, Israel. Recognized for excellence in teaching and research, he received the President’s Award for Teaching (2023) and an NSF Graduate Fellowship. He actively publishes and speaks at international conferences. 🏆📈🎓

Publication Profile

Google Schlolar

Academic Background

Prof. Adam Kapelner holds a Ph.D. in Statistics (2014) from the Wharton School, University of Pennsylvania, where he was advised by Abba Krieger and Edward George. He also earned an A.M. in Statistics (2012) from Wharton under the guidance of Dean Foster. His academic journey began at Stanford University, where he completed a B.S. in Mathematical & Computational Science (2006), with minors in Physics & Economics. 📊🔬 His strong foundation in statistics, mathematics, and computational science has significantly contributed to his expertise in data analysis and statistical modeling. 📈📚

Academic Employment 

Prof. Adam Kapelner is an Associate Professor of Mathematics at Queens College (since August 2021) and has been the Director of the Undergraduate Data Science and Statistics Program since 2019. Previously, he served as an Assistant Professor of Mathematics (2014–2021). 📊📚 In addition to his role at Queens College, he has been a Visiting Scholar at The Technion – Israel Institute of Technology since 2018, contributing to the Faculty of Industrial Engineering & Management. 🏫🔬 His expertise in statistics, data science, and mathematical modeling continues to shape the next generation of scholars. 🎯📈

Research Interest

Prof. Adam Kapelner’s research spans experimental design, randomization, and statistical software development. 🎲📊 He explores data science and machine learning, applying advanced statistical methods to real-world problems. 🤖📈 His work includes crowdsourced social science experiments, leveraging public participation for innovative research. 🌍🧠 Additionally, he focuses on biomedical applications, using statistical modeling to enhance healthcare analytics. 🏥🧬 Prof. Kapelner is also passionate about educational technology, integrating data-driven approaches to improve learning experiences. 🎓💡 His interdisciplinary expertise contributes significantly to advancing statistical methodologies and their applications across multiple domains. 🚀📉

Honors & Awards 

Prof. Adam Kapelner has received numerous accolades for his teaching, research, and academic contributions. 🎓📊 In March 2023, he was honored with the President’s Award for Excellence in Teaching. 👨‍🏫🏅 His research in economic behavior earned him a Highly Cited Research Certificate (2017). 📈📜 He was a National Science Foundation Graduate Research Fellow (2010-2013) and received the J. Parker Bursk Memorial Award for Excellence in Research (2013). 🏅🔬 His dedication to teaching was recognized with the Donald S. Murray Award (2012), and he was an Intel Science Talent Search Semifinalist early in his career. 🚀🎖️

Teaching Experience 

Prof. Adam Kapelner has extensive teaching experience in statistics, probability, and data science. 🎓📊 At Queens College, CUNY, he teaches courses such as Computational Statistics for Data Science, Probability Theory, Statistical Theory, and Machine Learning Fundamentals. 📈🤖 Since 2014, he has also instructed Bayesian Modeling, Statistical Inference, and Advanced Probability. 📊📚 Previously, at The Wharton School, University of Pennsylvania, he taught Predictive Analytics and Probability & Statistics while also serving as a teaching assistant for multiple statistics courses, including Linear Regression and MBA-level Statistics. 🎓📉 His expertise has shaped many aspiring statisticians and data scientists. 🚀📖

Industry Experience

Prof. Adam Kapelner has a diverse industry background in data science, software engineering, and consulting. 📊💻 Since 2014, he has provided private consulting in prediction modeling, data mining, and statistical testing for tech, real estate, and finance clients. 🏢📈 He worked as a Data Scientist at Coatue, optimizing algorithmic trading. 🤖📉 As Founder & CTO of DictionarySquared, he developed a web app for vocabulary learning, securing federal grant funding. 🚀📚 He was also Eventbrite’s first engineer, helping design its platform. 💡 At Stanford University, he developed image-processing software for biomedical research using machine learning. 🔬📊

Research Focus

Dr. Adam Kapelner specializes in statistical learning, Bayesian additive regression trees (BART), and data-driven decision-making. His work spans machine learning, causal inference, and predictive modeling 🎯. Notable contributions include BART-based predictive analytics, individual conditional expectation plots, and efficient experimental designs 📈. His interdisciplinary research extends to social media-based well-being predictions, crowdsourcing motivation, and personalized medicine 💡. He has also explored biostatistics, oncology-related immune analysis, and ketogenic therapies for cancer 🧬. His impactful research blends theoretical innovation with practical applications, advancing both statistics and computational methods 🔍.

Publication Top Notes

1️⃣ Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectationJournal of Computational and Graphical Statistics, 2015, Cited by: 1718 📊📈

2️⃣ Breaking Monotony with Meaning: Motivation in Crowdsourcing MarketsJournal of Economic Behavior & Organization, 2013, Cited by: 584 💡👥

3️⃣ bartMachine: Machine Learning with Bayesian Additive Regression TreesJournal of Statistical Software, 2016, Cited by: 451 🤖📉

4️⃣ Predicting individual well-being through the language of social mediaBiocomputing 2016 Proceedings, 2016, Cited by: 244 📱🧠

5️⃣ Variable selection for BART: an application to gene regulationJournal of Statistical Software, 2014, Cited by: 205 🧬📊

6️⃣ Preventing Satisficing in Online SurveysProceedings of CrowdConf, 2010, Cited by: 143 📝📑

7️⃣ Prediction with missing data via Bayesian additive regression treesCanadian Journal of Statistics, 2015, Cited by: 105 📉📈

8️⃣ Spatial organization of dendritic cells within tumor draining lymph nodes impacts clinical outcome in breast cancer patientsJournal of Translational Medicine, 2013, Cited by: 60 🧪🎗

9️⃣ Quantitative, architectural analysis of immune cell subsets in tumor-draining lymph nodes from breast cancer patients and healthy lymph nodesPLOS ONE, 2010, Cited by: 60 🔬🦠

🔟 Nearly random designs with greatly improved balanceBiometrika, 2019, Cited by: 46 📊📏

1️⃣1️⃣ Matching on-the-fly: Sequential allocation with higher power and efficiencyBiometrics, 2014, Cited by: 40 🏹🎯

Ilya Lipkovich | Statistics/Real world analytics | Best Researcher Award

Ilya Lipkovich | Statistics/Real world analytics | Best Researcher Award

Sr Research Advisor at Eli Lilly and Company,United States.

Dr. Ilya Lipkovich is a distinguished statistician and Sr. Research Advisor at Eli Lilly and Company. With over 20 years of experience in statistical consulting and pharmaceutical research, he has significantly contributed to the fields of missing data, subgroup identification, and observational data analysis. He has authored numerous papers, tutorials, and book chapters, and developed innovative statistical methodologies.

Profile:

orcid

Education:

  • Ph.D. in Statistics – Virginia Polytechnic Institute and State University, USA, 2002
  • M.S. in Statistics – University of Delaware, USA, 1998
  • B.S. in Statistics and Economics – Almaty Institute of National Economy, Kazakhstan, 1985

Experience :

  • Eli Lilly and Company (2018–Present): Sr. Research Advisor in the Real World Analytics team, leading the development of analytic solutions and best practices for value-based contracting, predictive analytics, and bias control in observational research.
  • IQVIA (2012–2018): Principal Scientific Advisor, leading the Data Mining and Statistical Analysis group.
  • Eli Lilly and Company (2002–2012): Principal Research Scientist, project/team lead for Data Mining of Advanced Analytics group.
  • Virginia Polytechnic Institute and State University (1998–2002): PhD student, consultant, and instructor.
  • DuPont Company (1997–1998): Intern at Quality Management and Technology Center.
  • University of Delaware (1995–1997): Graduate student and consultant.
  • World Bank (1997–1999): Short-term consultant, developed statistical software for risk analysis.
  • ICMA (1994–1995): Data analyst and software expert in Kazakhstan.
  • StatEx Ltd. (1990–1993): Statistical programmer in Kazakhstan.
  • Institute of National Economy (1989–1995): Data analyst and research assistant in Kazakhstan.

Research Interest :

  • Causal Inference: Developing methods to infer causal relationships from data.
  • Subgroup Identification: Creating tools to identify patient subgroups with enhanced treatment effects.
  • Observational Data Analysis: Analyzing real-world data to draw meaningful conclusions.
  • Missing Data Analysis: Addressing challenges in data analysis with incomplete datasets.
  • Advanced Analytics in Healthcare: Applying innovative statistical methods to improve healthcare outcomes.

Awards :

  • Outstanding Statistical Application Award from the American Statistical Association.
  • Excellence in Research Award from Eli Lilly and Company.

Publications :

Dr. Lipkovich has authored numerous papers, tutorials, and book chapters on statistical methodologies. Some of his notable publications include: