Koh-ichi Sugimoto | Mechanical Engineering | Best Researcher Award

Prof. Dr. Koh-ichi Sugimoto | Mechanical Engineering | Best Researcher Award

Prof. Dr. Koh-ichi Sugimoto, Shinshu University, Japan

Prof. Dr. Koh-ichi Sugimoto is a renowned Japanese academic and researcher in mechanical systems engineering. He holds a Doctor of Engineering from Tokyo Metropolitan University (1985) and is a Professor Emeritus at Shinshu University. His research focuses on TRIP-aided steels, precision die, and carbon nano composites. With over 9 books, 176 journal papers, and 63 patents, he has made significant contributions to materials science. Prof. Sugimoto has received numerous awards, including the 2024 Metals Outstanding Reviewer Award and the 2014 Gilbert R. Speich Award. He also serves on several editorial boards and advisory committees. 📚🔬

 

Publication Profile

Scopus

Orcid

Education 🎓

Prof. Dr. Koh-ichi Sugimoto holds an impressive academic background, beginning with his Bachelor of Engineering (1973) and Master of Engineering (1975) degrees from Shinshu University. His passion for materials science led him to pursue a Doctor of Engineering at Tokyo Metropolitan University, where he completed his doctoral research in 1985. His doctoral dissertation focused on “A Basic Study on Deformation Mechanism of High-Strength Dual-Phase Steels,” a topic that has influenced his lifelong research in steel technology and materials engineering. Prof. Sugimoto’s strong educational foundation has shaped his influential contributions to the field. 📘🔬

 

Work Experience 💼

Prof. Dr. Koh-ichi Sugimoto has had a distinguished career spanning several decades. He served as a Research Advisor at OP Jindal University since 2019. Prior to that, he was Professor Emeritus at Shinshu University (2016) and held various key roles including Advisor to the President (2009-2010) and Associate Dean (2008). His leadership also extended to serving as Councilor (2005-2007) and Special Advisor to the President (2001-2003) at Shinshu University. With over 30 years of teaching experience, Prof. Sugimoto was a Professor (1998-2015) and Associate Professor (1987-1997). He also worked as an Assistant Manager at Daido Steel Co. Ltd. (1986) and Assistant Professor at Tokyo Metropolitan University (1975-1985). 🌟📚

 

Awards 🏆

Prof. Dr. Koh-ichi Sugimoto has received several prestigious awards throughout his career. Notably, he is the recipient of the 2024 Metals Outstanding Reviewer Award (announced in March 2025) from MDPI. He earned the Metallography, Microstructure, and Analysis Editor’s Choice Award in 2016 for his paper on TRIP-Aided Martensitic Steel. In 2014, he was honored with the Gilbert R. Speich Award for his work on advanced ultrahigh-strength steels. Other awards include the Materials Significant Contribution Award (2013), Charles Hatchett Award (2006), and the Nishiyama Commemorative Prize (2001). 🌟📚

 

Research Focus 📚🔬

Prof. Dr. Koh-ichi Sugimoto’s research primarily revolves around ultrahigh-strength TRIP-aided steels and their mechanical properties, microstructure, and deformation behavior. His work explores bainitic ferrite and martensite matrix structures in steels, including their impact toughness, fatigue properties, and cold formability. He also investigates the effects of thermomechanical processing on hydrogen embrittlement and the influence of mean normal stress on strain-hardening behaviors. His contributions to advanced materials are crucial in enhancing steel applications, particularly in automotive and structural engineering industries. ⚙️🔧🛠️

 

Publication Top Notes 📚

  • Evaluation of Shear-Punched Surface Layer Damage in Ultrahigh-Strength TRIP-Aided Steels (2024) 📘  | DOI: 10.3390/met14091034
  • Effects of Mean Normal Stress and Microstructural Properties on Deformation Properties of Ultrahigh-Strength TRIP-Aided Steels (2024) 📘 | Cited by: 1 | DOI: 10.3390/ma17143554
  • Evaluation of Shear-Punched Surface Layer Damage in Three Types of High-Strength TRIP-Aided Steel (2024) 📘 | Cited by: 1 | DOI: 10.3390/met14050531
  • Effects of Mean Normal Stress on Strain-Hardening, Strain-Induced Martensite Transformation, and Void-Formation Behaviors in High-Strength TRIP-Aided Steels (2024) 📘 | Cited by: 3 | DOI: 10.3390/met14010061
  • Effects of Partial Replacement of Si by Al on Impact Toughness of 0.2%C-Si-Mn-Cr-B TRIP-Aided Martensitic Steel (2023) 📘 | DOI: 10.3390/met13071206
  • Effects of Partial Replacement of Si by Al on Cold Formability in Two Groups of Low-Carbon Third-Generation Advanced High-Strength Steel Sheet: A Review (2022) 📚 | Cited by: 3 | DOI: 10.3390/met12122069
  • Effects of Thermomechanical Processing on Hydrogen Embrittlement Properties of Ultrahigh-Strength TRIP-Aided Bainitic Ferrite Steels (2022) 📘 | Cited by: 1 | DOI: 10.3390/met12020269
  • Cold Formabilities of Martensite-Type Medium Mn Steel (2021) 📘 | Cited by: 3 | DOI: 10.3390/met11091371
  • Influence of Cooling Process Routes after Intercritical Annealing on Impact Toughness of Duplex Type Medium Mn Steel (2021) 📘 | Cited by: 4 | DOI: 10.3390/met11071143
  • Recent Progress of Low and Medium-Carbon Advanced Martensitic Steels (2021) 📚 | DOI: 10.3390/met11040652

 

Prabhakar M | Engineering | Best Researcher Award

Dr. Prabhakar M  | Engineering | Best Researcher Award | Engineering | Best Researcher Award

Professor, Vellore Institute of Technology, Chennai,  India

M. Prabhakar is a seasoned academic with over 23 years of experience in teaching and research in electrical engineering. He holds a B.E. in Electrical and Electronics Engineering, an M.E. in Power Electronics and Drives, and a Ph.D. in Electrical Engineering. Currently a professor at Vellore Institute of Technology (VIT), Chennai, he has made significant contributions to the fields of power electronics, DC-DC converters, and DC microgrids, with over 50 published research articles. He has been actively involved in the Centre of Smart Grid Technologies and has received a seed grant of Rs. 4.53 lakhs to support his research. In recognition of his work, he has received the Research Award from VIT every year since 2012, and the Outstanding Teacher Award in 2009. His achievements in research, teaching, and securing funding demonstrate his strong qualifications, making him an excellent candidate for the Research for Best Researcher Award.

Profile:

Education

M. Prabhakar’s educational background demonstrates a strong commitment to the field of electrical engineering. He earned his Bachelor of Engineering (B.E.) degree in Electrical and Electronics Engineering from the University of Madras, Chennai, in 1998. Building on this foundation, he pursued a Master of Engineering (M.E.) in Power Electronics and Drives from Bharathidasan University, Tiruchirappalli, which he completed in 2000. His academic journey culminated in 2012 with a Ph.D. in Electrical Engineering from Anna University, Chennai. These degrees represent his deep expertise in the domains of power electronics and electrical systems, establishing the knowledge base from which his research has flourished. His educational progression highlights a focused pursuit of specialization in power electronics, further enhanced by practical and theoretical insights gained throughout his academic career. Prabhakar’s qualifications position him as an expert in his field, equipping him with the necessary foundation to drive impactful research and academic contributions.

Professional Experiences

M. Prabhakar brings over 23 years of professional experience in academia, combining teaching, research, and leadership in the field of electrical engineering. He began his career as an educator after earning his M.E. in Power Electronics and Drives in 2000. His extensive experience includes his roles as Associate Professor at Vellore Institute of Technology (VIT) since 2012, and later, Professor since 2019. He is actively involved in research related to power electronics, DC-DC converters, and microgrids. His engagement with the Centre of Smart Grid Technologies from 2022 onwards showcases his contributions to advancing energy systems. M. Prabhakar has co-authored over 50 research articles in high-impact journals and conferences and serves as a reviewer for numerous reputable journals. His expertise has been acknowledged through several awards, including the VIT Research Award, which he has received annually since 2012, and the Outstanding Teacher Award in 2009.

Research Skills

M. Prabhakar possesses a diverse set of research skills and experiences honed over more than 23 years in academia. His expertise in power electronics and DC microgrids is complemented by a robust publication record, with over 50 research articles in high-impact journals and conferences. He has successfully led various research projects, including securing a seed grant of Rs. 4.53 lakhs from Vellore Institute of Technology. As an active reviewer for esteemed journals, he critically engages with cutting-edge research, enhancing his analytical skills. His experience extends to mentoring students and collaborating with peers, fostering an environment of innovation and inquiry. Additionally, his involvement with the Centre of Smart Grid Technologies further enriches his research profile, enabling him to explore practical applications of his work. Collectively, these experiences underscore his capability as a researcher dedicated to advancing knowledge in electrical engineering and power systems.

Award And Recognitions

M. Prabhakar is a distinguished academic with over 23 years of teaching and research experience in electrical engineering. He has been recognized with several prestigious awards, including the Outstanding Teacher Award in 2009 for his exceptional contributions to education. Since 2012, he has received the Research Award from Vellore Institute of Technology (VIT) for his impactful research contributions, demonstrating his commitment to advancing knowledge in power electronics and smart grid technologies. His extensive publication record includes over 50 co-authored articles in high-impact journals and conferences, showcasing his active involvement in the research community. Additionally, he secured a seed grant of Rs. 4.53 lakhs to support his innovative research projects. M. Prabhakar’s accolades reflect his dedication to excellence in teaching, research, and community impact, solidifying his reputation as a leading figure in the field of electrical engineering.

Conclusion

M. Prabhakar’s extensive qualifications, coupled with over 23 years of teaching and research experience, establish him as a leading candidate for the Research for Best Researcher Award. His impressive academic background includes a B.E., M.E., and Ph.D. in Electrical Engineering, demonstrating his deep commitment to the field. Prabhakar’s contributions to power electronics, DC-DC converters, and DC microgrids are underscored by the publication of over 50 research articles in high-impact journals. His consistent recognition through the Research Award at Vellore Institute of Technology since 2012 and the Outstanding Teacher Award in 2009 further validate his influence as an educator and researcher. Additionally, securing a significant seed grant and his association with the Centre of Smart Grid Technologies highlight his innovative approach to research. Overall, M. Prabhakar’s exceptional academic credentials, research contributions, and ongoing dedication to advancing electrical engineering make him an exemplary choice for this prestigious award.

Publication Top Notes

  • Article
    Title: Non-isolated high gain DC–DC converter with ripple-free source current
    Authors: Valarmathy, A.S., Prabhakar, M.
    Journal: Scientific Reports
    Year: 2024
    Citations: 1
  • Book Chapter
    Title: High gain DC-DC converters for photovoltaic applications
    Authors: Prabhakar, M., Revathi, B.S.
    Book: Power Converters, Drives and Controls for Sustainable Operations
    Year: 2024
    Citations: 0
  • Editorial
    Title: Modelling, design and control of power electronic converters for smart grids and electric vehicle applications
    Authors: Prabhakar, M., Tofoli, F.L., Elgendy, M.A., Wang, H.
    Journal: IET Power Electronics
    Year: 2024
    Citations: 0
  • Article
    Title: Reconfigurable high step-up DC to DC converter for microgrid applications
    Authors: Tewari, N., Paul, N., Jayaraman, M., Prabhakar, M.
    Journal: IET Power Electronics
    Year: 2024
    Citations: 6
  • Article
    Title: High gain interleaved boost-derived DC-DC converters – A review on structural variations, gain extension mechanisms and applications
    Authors: Valarmathy, A.S., Prabhakar, M.
    Journal: e-Prime – Advances in Electrical Engineering, Electronics and Energy
    Year: 2024
    Citations: 2
  • Article (in Press)
    Title: Dual-input step-up switched-capacitor multilevel inverter with reduced voltage stress on devices
    Authors: Ghelichi, A., Varesi, K., Zeinaly, A., Prabhakar, M.
    Journal: International Journal of Circuit Theory and Applications
    Year: 2024
    Citations: 0
  • Article (in Press)
    Title: High gain interleaved DC-DC converter with ripple-free input current and low device stress
    Authors: Valarmathy, A.S., Mahalingam, P., Prabhakar, M.
    Journal: International Journal of Electronics
    Year: 2024
    Citations: 1
  • Conference Paper
    Title: Performance Analysis of Asymmetric High Gain Multi-Input Converter under Widely Fluctuating Inputs
    Authors: Mohana Preethi, V., Prabhakar, M., Kumar, N.S.
    Conference: ACM International Conference Proceeding Series
    Year: 2023
    Citations: 0
  • Book Chapter
    Title: Interleaved Cubic Boost Converter
    Authors: Ram, C.S., Shiggavi, A.B., Maharaajan, A.A., Thiyagarajan, R.A., Prabhakar, M.
    Book: IoT and Analytics in Renewable Energy Systems (Volume 2): AI, ML and IoT Deployment in Sustainable Smart Cities
    Year: 2023
    Citations: 1
  • Conference Paper
    Title: Design and Simulation of Coupled Inductor-Based Asymmetric High Gain Multi-input DC–DC Converters
    Authors: Preethi, V.M., Prabhakar, M.
    Conference: Lecture Notes in Electrical Engineering
    Year: 2023
    Citations: 1

 

Raffaele Iervolino | Engineering | Best Researcher Award

Prof. Raffaele Iervolino | Engineering | Best Researcher Award

Prof. Raffaele Iervolino, University of Naples Federico II, Italy

Prof. Raffaele Iervolino is an esteemed Associate Professor of Automatic Control at the University of Naples Federico II, specializing in control systems analysis and design. Born in 1971 in Milan, Italy, he earned his M.S. in Aerospace Engineering in 1996 and a PhD in Computer and Automation Engineering in 2002. Raffaele has collaborated on numerous national and European research projects and has authored over 60 publications. His research interests include stability analysis of piecewise linear systems, reinforcement learning, and resource allocation problems. He is a Senior Member of the IEEE Control System Society. 📚✈️🔧

 

Publication profile

Google Scholar

Educational Background

Prof. Raffaele Iervolino holds a Research Doctorate degree from the University of Naples Federico II, obtained in March 2002. His academic journey began with a Research Doctorate in Computer and Automatic Engineering at the same university, specializing in Control and Systems Engineering from 1998 to 2001. He earned his Professional Engineer certificate in November 1996, further demonstrating his expertise. Prof. Iervolino completed his Laurea degree in Aerospace Engineering, graduating summa cum laude in June 1996 from the University of Naples Federico II, showcasing his exceptional academic achievements and commitment to engineering excellence. ✈️

 

Employment 🏫

Prof. Raffaele Iervolino currently serves as an Associate Professor of Automatic Control at the Faculty of Engineering, University of Naples Federico II, since 2024. Previously, he held the position of Assistant Professor of Automatic Control at the same university from 2003 to 2024. Beyond academia, he is a scientific consultant specializing in control system analysis and design for several organizations, including the academic spin-off Megaride (2018-present) and the electronics company Megaris (2015-present). He has also contributed to the CREATE Consortium (2002-present) and was a consultant for the FIAT Research Center from 1999 to 2004. 🔧

 

Teaching Activity 📚

Prof. Raffaele Iervolino has made significant contributions to education through various academic courses. Since 2019, he has taught the Control Lab for the M.S. in Robotics and Automation Engineering at the University of Naples. Additionally, he has been instructing Systems Theory for the B.S. in Electronic Engineering at the Italian Air Force Academy since 2017. From 2011 to 2013, he taught Automation Technologies in the B.S. Computer Science Engineering program at the University of Naples. He also offered the course Fundamentals of Dynamic Systems for Biomedical Engineering from 2003 to 2022. In June 2018, he conducted a seminar on “A Consensus Policy and Piecewise Quadratic Stability for Heterogeneous Opinion Dynamics” at the University of Groningen, Netherlands. 🎓

 

Research Contributions

He has authored over 60 publications, including journal papers, conference papers, and book chapters. His work covers crucial areas such as stability analysis of piecewise linear systems, opinion dynamics, and reinforcement learning, contributing to advancements in automatic control and engineering.

Publication Top Notes

  • Lyapunov stability for piecewise affine systems via cone-copositivity 📄 – Citations: 53, Year: 2017
  • Reinforcement learning in spacecraft control applications: Advances, prospects, and challenges 🚀 – Citations: 47, Year: 2022
  • Primary frequency response improvement in interconnected power systems using electric vehicle virtual power plants ⚡ – Citations: 40, Year: 2020
  • Category II pilot in-the-loop oscillations analysis from robust stability methods ✈️ – Citations: 39, Year: 2001
  • Cone-copositive piecewise quadratic Lyapunov functions for conewise linear systems 🔍 – Citations: 37, Year: 2015
  • Approximate dynamic programming for stochastic resource allocation problems 📊 – Citations: 36, Year: 2020
  • Analysis of pilot-in-the-loop oscillations due to position and rate saturations ⚙️ – Citations: 34, Year: 2000
  • Practical consensus in bounded confidence opinion dynamics 🤝 – Citations: 27, Year: 2021
  • mu synthesis for a small commercial aircraft: Design and simulator validation ✈️ – Citations: 27, Year: 2004
  • A wearable device for sport performance analysis and monitoring 🏋️ – Citations: 26, Year: 2017


Conclusion

Prof. Raffaele Iervolino’s impressive educational credentials, extensive research contributions, active participation in significant projects, and commitment to teaching make him an outstanding candidate for the Best Researcher Award. His work not only advances knowledge in automatic control but also has practical implications across various industries.

 

Zhipeng Zhao | Engineering | Best Researcher Award

Assist Prof Dr. Zhipeng Zhao | Engineering | Best Researcher Award

Assistant Professor, Tongji University, China

Dr. Zhipeng Zhao, currently an Assistant Professor at Tongji University, showcases an impressive academic and research profile, making him a strong candidate for the Research for Best Researcher Award. With a Ph.D. in Civil Engineering and a GPA of 90.30, he has garnered several accolades, including recognition among the World’s Top 2% Scientists in 2024. His research interests focus on artificial intelligence in structural health monitoring and innovative anti-seismic systems, contributing significantly to advancements in civil engineering. He has published numerous peer-reviewed articles, demonstrating a commitment to advancing knowledge in his field. His collaborative work has resulted in impactful research, earning him prestigious fellowships and awards, such as the JSPS Foreign Research Fellow and Shanghai Leading Talents recognition. Dr. Zhao’s combination of research excellence, innovation, and leadership positions him as an exemplary figure in civil engineering, underscoring his suitability for this prestigious award.

Profile:

Education

Dr. Zhipeng Zhao earned his Ph.D. in Civil Engineering from Tongji University, Shanghai, China, in 2021, where he achieved an impressive GPA of 90.30/100. His academic journey began at the same institution, where he completed his Bachelor’s degree in Civil Engineering in 2017, graduating with a remarkable GPA of 93.00/100. During his doctoral studies, Dr. Zhao focused on advanced topics in structural health monitoring and vibration control, demonstrating a commitment to enhancing the resilience of civil engineering structures. His educational background has provided him with a solid foundation in both theoretical and practical aspects of civil engineering, equipping him with the skills necessary to tackle complex engineering challenges. Dr. Zhao’s strong academic performance and rigorous training reflect his dedication to excellence in the field, positioning him as a valuable contributor to research and innovation in civil engineering.

 

Research Skills

Dr. Zhipeng Zhao possesses exceptional research skills that significantly contribute to the advancement of civil engineering, particularly in artificial intelligence-based structural health monitoring and vibration control. His ability to develop innovative anti-seismic structural systems is demonstrated through numerous peer-reviewed publications, reflecting a strong command of both theoretical and practical applications. Dr. Zhao excels in employing cutting-edge methodologies for ground motion simulation, allowing for accurate predictions and enhanced structural safety. His collaborative work as a corresponding author on various high-impact journals showcases his capacity to lead multidisciplinary teams and drive impactful research initiatives. Additionally, his recognition as one of the world’s top 2% scientists and several prestigious awards underscore his commitment to excellence in research. Overall, Dr. Zhao’s research skills are characterized by a blend of creativity, technical proficiency, and a keen understanding of contemporary challenges in civil engineering, making him a leading candidate for the Research for Best Researcher Award.

 

Professional Experiences

Dr. Zhipeng Zhao, currently an Assistant Professor at Tongji University, has cultivated a distinguished career in civil engineering, particularly in structural health monitoring and vibration control. He has served as a JSPS Foreign Research Fellow at Tohoku University, Japan, where he engaged in advanced research from 2022 to 2023. Prior to this, he completed a postdoctoral fellowship at the Hong Kong Polytechnic University and City University of Hong Kong. Dr. Zhao’s academic journey began with a Bachelor’s and a Ph.D. in Civil Engineering from Tongji University, where he excelled in his studies. His remarkable contributions to the field are underscored by multiple honors, including recognition as one of the world’s top 2% scientists in 2024 and the prestigious Shanghai Leading Talents (Overseas) Young Talents award in 2022. With an extensive publication record, Dr. Zhao is a leader in innovative anti-seismic structural systems.

Award And Recognition

Dr. Zhipeng Zhao, an Assistant Professor at Tongji University, has garnered significant accolades for his groundbreaking research in civil engineering, particularly in artificial intelligence-based structural health monitoring and seismic resilience. Recognized among the world’s top 2% of scientists in 2024, he has received prestigious awards, including the Shanghai Leading Talents (Overseas) Young Talents in 2022 and the Tongji University’s top ten scientific achievements with transformative potential in 2023. His work has been frequently cited, earning him the Most Cited Articles recognition in Engineering Structures from 2018 to 2021. Notably, Dr. Zhao was honored with first and second prizes for outstanding papers at the National Structural Engineering Academic Conference in 2018 and 2023, respectively, further solidifying his reputation as a leading researcher in his field. His exceptional contributions demonstrate a commitment to advancing civil engineering and improving infrastructure resilience against natural disasters.

Conclusion

In summary, Dr. Zhipeng Zhao exemplifies excellence in civil engineering, particularly in the fields of artificial intelligence-based structural health monitoring and seismic control systems. His impressive academic background, highlighted by a Ph.D. from Tongji University, is complemented by numerous accolades, including recognition as one of the world’s top 2% scientists in 2024. Dr. Zhao’s innovative contributions, reflected in over 40 peer-reviewed publications, demonstrate his commitment to advancing structural resilience against seismic activities. His research not only addresses critical challenges in civil engineering but also significantly impacts the safety and sustainability of urban infrastructure. As an Assistant Professor at Tongji University and a recipient of multiple prestigious awards, Dr. Zhao’s ongoing research initiatives position him as a leader in the field. His dedication to enhancing structural engineering practices makes him a worthy candidate for the Research for Best Researcher Award.

Publication Top Notes

  • Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system
    R. Zhang, Z. Zhao, K. Dai
    Engineering Structures, 180, 29-39, 221 citations, 2019
  • Damping enhancement principle of inerter system
    R. Zhang, Z. Zhao, C. Pan, K. Ikago, S. Xue
    Structural Control and Health Monitoring, 27(5), e2523, 147 citations, 2020
  • Seismic response mitigation of structures with a friction pendulum inerter system
    Z. Zhao, R. Zhang, Y. Jiang, C. Pan
    Engineering Structures, 193, 110-120, 125 citations, 2019
  • A tuned liquid inerter system for vibration control
    Z. Zhao, R. Zhang, Y. Jiang, C. Pan
    International Journal of Mechanical Sciences, 164, 105171, 108 citations, 2019
  • Optimal design based on analytical solution for storage tank with inerter isolation system
    Y. Jiang, Z. Zhao, R. Zhang, D. De Domenico, C. Pan
    Soil Dynamics and Earthquake Engineering, 129, 105924, 91 citations, 2020
  • Optimal design of an inerter isolation system considering the soil condition
    Z. Zhao, Q. Chen, R. Zhang, C. Pan, Y. Jiang
    Engineering Structures, 196, 109324, 76 citations, 2019
  • Energy dissipation mechanism of inerter systems
    Z. Zhao, Q. Chen, R. Zhang, C. Pan, Y. Jiang
    International Journal of Mechanical Sciences, 105845, 74 citations, 2020
  • Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks
    R. Zhang, Z. Zhao, C. Pan
    Soil Dynamics and Earthquake Engineering, 114, 639-649, 70 citations, 2018
  • Impact of soil–structure interaction on structures with inerter system
    Q. Chen, Z. Zhao, R. Zhang, C. Pan
    Journal of Sound and Vibration, 433, 1-15, 65 citations, 2018
  • A particle inerter system for structural seismic response mitigation
    Z. Zhao, R. Zhang, Z. Lu
    Journal of the Franklin Institute, Engineering and Applied Mathematics, 356, 54 citations, 2019
  • Comfort based floor design employing tuned inerter mass system
    Q. Chen, Z. Zhao, Y. Xia, C. Pan, H. Luo, R. Zhang
    Journal of Sound and Vibration, 458, 143-157, 47 citations, 2019
  • Displacement mitigation–oriented design and mechanism for inerter-based isolation system
    Z. Zhao, R. Zhang, N.E. Wierschem, Y. Jiang, C. Pan
    Journal of Vibration and Control, 27(17-18), 1991-2003, 46 citations, 2021
  • Seismic performance upgrading of containment structures using a negative-stiffness amplification system
    Z. Zhao, Y. Wang, X. Hu, D. Weng
    Engineering Structures, 262, 114394, 42 citations, 2022
  • A negative stiffness inerter system (NSIS) for earthquake protection purposes
    Z. Zhao, Q. Chen, R. Zhang, Y. Jiang, C. Pan
    Smart Structures and Systems, 26(4), 481-493, 33 citations, 2020
  • Enhanced energy dissipation benefit of negative stiffness amplifying dampers
    Z. Zhao, Q. Chen, X. Hu, R. Zhang
    International Journal of Mechanical Sciences, 240, 107934, 32 citations, 2023
  • Input energy reduction principle of structures with generic tuned mass damper inerter
    Z. Zhao, R. Zhang, C. Pan, Q. Chen, Y. Jiang
    Structural Control and Health Monitoring, 28(1), e2644, 31 citations, 2021
  • Interaction of two adjacent structures coupled by inerter-based system considering soil conditions
    Z. Zhao, Q. Chen, R. Zhang, Y. Jiang, Y. Xia
    Journal of Earthquake Engineering, 26(6), 2867-2887, 28 citations, 2022
  • Seismic demand and capacity models, and fragility estimates for underground structures considering spatially varying soil properties
    Z. He, H. Xu, P. Gardoni, Y. Zhou, Y. Wang, Z. Zhao
    Tunnelling and Underground Space Technology, 119, 104231, 27 citations, 2022
  • Analytical optimization of the tuned viscous mass damper under impulsive excitations
    Z. Zhao, X. Hu, R. Zhang, Q. Chen
    International Journal of Mechanical Sciences, 228, 107472, 25 citations, 2022
  • Friction pendulum-strengthened tuned liquid damper (FPTLD) for earthquake resilience of isolated structures
    Z. Zhao, X. Hu, Q. Chen, Y. Wang, N. Hong, R. Zhang
    International Journal of Mechanical Sciences, 244, 108084, citations not specified.

qinghua Gui | Engineering | Best Researcher Award

qinghua Gui | Engineering | Best Researcher Award

Mr qinghua Gui, University of Science and Technology of China, China

Based on the provided details, it seems that Qinghua Gui is a suitable candidate for a “Best Researcher Award,” particularly within the field of engineering, specifically sodium-ion battery condition monitoring. However, the articles listed under Paola Imperatore do not align with Qinghua Gui’s research focus, as they are concentrated in sociopolitical and environmental mobilization topics.

Publication profile

Orcid

Education

A Doctor of Engineering (D.E.) is an advanced professional degree that focuses on applying engineering principles to real-world problems. This degree typically emphasizes research, innovation, and practical solutions in various fields such as civil, mechanical, electrical, and industrial engineering. D.E. graduates often lead in academia, industry, or government, contributing to technological advancements, infrastructure development, and cutting-edge engineering projects. The program combines rigorous coursework with applied research, equipping professionals with the skills to solve complex engineering challenges and drive progress in their respective fields. 🌍🔧💡

Towards an Ecological Transition from Below

This article explores worker mobilization within the automotive sector, analyzing how grassroots efforts contribute to ecological transitions. It provides insights into the intersection between labor and environmental activism, which is a timely and significant contribution to understanding social movements.

Le trasformazioni del movimento ambientalista in Italia

This study addresses the transformation of Italy’s environmental movement, particularly the balance between institutionalization and conflict. The focus is on the evolution of environmental activism, offering valuable historical and political context for the environmental discourse in Italy.

A Working-Class Environmentalism: The GKN Case Study

This article examines class-based environmentalism, particularly within the GKN case. It highlights the intersection of labor and environmental struggles, emphasizing the role of the working class in advocating for environmental justice. This is an important perspective in sociological and labor studies.

Territories and Protest: Mobilization Opportunities

In this paper, Imperatore explores the relationship between political opportunities and protest mobilization, focusing on cases such as the No TAP and No Grandi Navi movements. This study provides a theoretical framework for understanding how political and discursive factors influence environmental protests.

The Case of the Excavation in the Apuan Alps

This article discusses the environmental and social impact of excavation in the Apuan Alps. It focuses on environmental degradation and the local protests that have emerged in response. This case study underscores the complex interaction between industry, environment, and local activism.

Research focus

Qinghua Gui’s research focuses on energy materials, specifically in the field of sodium-ion batteries and solar energy systems. His work explores the behavior of cathode materials like NaNi₁/₃Fe₁/₃Mn₁/₃O₂ and Na₄Fe₃(PO₄)₂(P₂O₇) under thermal runaway conditions, contributing to battery safety and performance. Additionally, he has worked on improving solar energy efficiency through the design of compound parabolic concentrators to minimize light loss in vacuum tubes. His expertise spans energy storage, photo-thermal conversion, and renewable energy technology development. 🔋☀️⚡

Conclusion

While Paola Imperatore’s research is diverse and covers vital topics in environmental activism, labor studies, and political sociology, it does not match Qinghua Gui’s field of expertise in sodium-ion battery condition monitoring. For the “Best Researcher Award” within an engineering or technological research context, Qinghua Gui would be a stronger candidate. Conversely, Paola Imperatore would be an excellent candidate for awards focused on environmental sociology or labor activism research.

Publication top notes

Comparison of NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> and Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>(P<sub>2</sub>O<sub>7</sub>) cathode sodium-ion battery behavior under overcharging induced thermal runaway