Ndy von kluge Paul | Mechanic | Excellence in Research

Dr. Ndy von kluge Paul | Mechanic | Excellence in Research

Dr. Ndy von kluge Paul, University of yaounde1, Cameroon

Dr. Paul Ndy von Kluge is a dedicated academic and civil engineer from Cameroon, currently serving as a permanent lecturer at the University of Yaoundé I, UIT Bois de Mbalmayo. With a PhD in Physics and Civil Engineering, his research focuses on nonlinear dynamics, chaos, and stochastic excitation in structural systems. Dr. Ndy has significant experience in civil engineering projects, including the Memve’ele Hydroelectric Dam. He has published numerous articles and books on mechanics and vibration control. Fluent in French, English, and German, Dr. Ndy is also a skilled programmer and proficient in engineering design software. 🏗️📚🔬

 

Publication Profile

Orcid

Academic Background & Research Focus 🎓🔬

Dr. Ndy von Kluge Paul holds a PhD in Physics from the University of Yaoundé 1, specializing in Nonlinear Pounding and Engineering Failure Analysis of non-smooth structural systems subjected to stochastic excitations. His research includes nonlinear dynamics, chaos theory, active nonlinear control, and dry friction dynamics. He completed his Master’s in Physics with a thesis on Dry Friction Oscillators under two-frequency excitations. Additionally, he earned a Master’s degree in Civil Engineering from ENSET, University of Douala, focusing on road requalification and construction of public works. His diverse expertise contributes to advanced structural control and analysis. 🏗️⚙️

 

Employment History 🏢🔧

Dr. Ndy von Kluge Paul has extensive experience in both civil engineering and academia. From 2009 to 2011, he served as an Ingénieur des Travaux Publics at the University of Yaoundé 2 Soa, working in the Direction of Infrastructures, Planning, and Development (DIPD). Between 2011 and 2020, he was assigned to the Ministry of Water and Energy (MINEE) and contributed to the Memve’ele Hydroelectric Project, overseeing the construction of the hydroelectric plant and energy evacuation systems. From 2020, he worked at Electricity Development Corporation (EDC) on maintenance projects for the Memve’ele Dam. Since May 2024, he has been a permanent lecturer at Université de Yaoundé 1. 🎓⚡🔨

 

Teaching Experience 📚👨‍🏫

Dr. Ndy von Kluge Paul has a rich teaching background spanning several years. From 2002 to 2006, he taught Physics, Chemistry, and Mathematics at Collège Privé Laïc ‘Les Bambis’ and other institutions. He also worked as a temporary secondary school teacher. Between 2011 and 2023, he provided professional supervision for students from major engineering schools like Polytechnique, FGI Douala, ENSTP at the Memve’ele Hydroelectric Project site. In 2021-2022, he taught at Institut Universitaire NGODO Melingui. Since 2022, he has been supervising DUT and License students at UIT Bois, University of Yaoundé 1. 🎓📘

 

Research Interests 🌐🔧

Dr. Ndy von Kluge Paul’s research spans a wide array of dynamic fields. His primary focus includes Spatiotemporal Chaos, Electrical Lines, and Nonlinear Oscillators, with an emphasis on Mathematical Modeling and Computational Analysis of complex systems in Electromechanics and Fluid Dynamics. His work extensively explores Dissipative Systems, contributing significantly to the fields of Civil Engineering, Mechanical Engineering, and Powertrain Dynamics. Additionally, Dr. Paul has made notable advancements in Non-linear Vibration, Vibro-acoustics, and Noise Control, driving innovations in various engineering applications. ⚙️📐🌊

 

Publication Top Notes

Application to nonlinear mechanical systems with dry friction: hard bifurcation in SD oscillator

Mohammad Divandari | Electronic Engineering | Best Researcher Award

Assist. Prof. Dr. Mohammad Divandari | Electronic Engineering | Best Researcher Award

Assist. Prof. Dr. Mohammad Divandari, Islamic Azad University, Iran

Assist. Prof. Dr. Mohammad Divandari is an Assistant Professor of Electrical Engineering/Control Systems at Islamic Azad University, Iran. He holds a Ph.D. in Electrical Engineering from Babol Noshirvani University (2019) with a thesis on switched reluctance motor drives. His research interests include electrical motor theory, control systems, and non-linear control. Dr. Divandari has extensive industry experience, having worked in JEMCO Company in various technical roles from 1998 to 2007. He is skilled in simulation, embedded systems, and electrical drive implementation. He is a member of IEEE and the Iranian Inventors Association. 🧑‍🏫🔧💡📚

 

Publication Profile

Orcid

Google Scholar

Educational Background

Assist. Prof. Dr. Mohammad Divandari earned his Ph.D. in Electrical Engineering from Babol Noshirvani University of Technology in 2019, focusing on the design and implementation of a switched reluctance motor drive with DSP-TMS320F28335, earning a high score of 19.75/20. He completed his M.Sc. in Control Systems at Islamic Azad University, Tehran, in 2003, where his thesis on fuzzy logic control of switched reluctance motors earned him a score of 19/20. Dr. Divandari also holds a B.Sc. in Electronic Engineering from Islamic Azad University, Sabzevar (1998), with a thesis on DC/AC converter design, scoring 18.5/20. 💡🔧📚

 

Professional Experience

Dr. Mohammad Divandari worked as an Electrical Engineer at JEMCO Company (Jovain Electrical Machines Industries Co.) from 1998 to 2007. His roles included installing and operating machinery (1998-1999), working in machinery adjustment committees with foreign experts (1999-2000), and serving as an expert in the technical documents center (2000-2001). He also contributed to the Research and Development (R&D) department (2001-2003) and later worked in sales engineering within the commercial units (2003-2007). His extensive experience helped shape his expertise in electrical systems and engineering solutions. ⚙️🔧🌍

 

Academic Experience

Dr. Mohammad Divandari has had extensive teaching experience in Electrical Engineering and Control Systems. From 2004 to 2019, he was a Lecturer at Islamic Azad University, Iran, where he taught a wide range of subjects, including Electronics, Electrical Machines, Control Systems, Power Electronics, and Pattern Recognition. He also conducted labs on Linear Control Systems, Non-linear Control, and Instrumentation. Since 2019, he has served as an Assistant Professor, continuing his impactful work in teaching and mentoring future engineers. His contributions significantly shape the next generation of electrical engineers. 📚⚡️

 

Software Expertise

Assist. Prof. Dr. Mohammad Divandari has extensive expertise in software tools for simulation and embedded systems. He is proficient in MATLAB/SIMULINK, PLECS, and ANSYS/Maxwell for FEM simulations. His experience extends to embedded systems, specifically with DSP TMS320F28335 using Code Composer Studio for C programming. Additionally, he has hands-on experience with Cadence SPB/OrCAD for Pspice and circuit analysis and Altium Designer for PCB design (two-layer, metalized). His skills in these advanced tools support his research and development in electrical engineering. 🖥️🔧📐

 

Honors and Award

In recognition of his innovative contributions, Assist. Prof. Dr. Mohammad Divandari received a patent in 2001–2002 for an automatic device designed to measure the pressure of automobile tires. This device is adjustable to optimize energy consumption in automobiles. The patent, registered under No. 013233 in Iran on March 13, 2006, showcases his commitment to advancing technology in the automotive and energy sectors. This achievement highlights his inventive approach to solving practical engineering challenges. 🚗🔧⚡

 

Research Focus

Assist. Prof. Dr. Mohammad Divandari’s research focuses on advanced control systems and optimization techniques for switched reluctance motor (SRM) drives, with a strong emphasis on fuzzy logic control to reduce torque ripple and acoustic noise. His work extends to sensorless motor drives, dynamic observers, and electromagnetic levitation systems. Additionally, Dr. Divandari explores brushless DC motors, power electronic systems, and micro-turbine control. His contributions have had significant impacts on energy efficiency, control systems, and motor design. 🌍🔌📉 His work is essential in the electrical engineering and control systems domains.

 

Publication Top Notes

  • Radial force and torque ripple optimization for acoustic noise reduction of SRM drives via fuzzy logic control (Cited by: 52, Year: 2010) ⚙️📉
  • Speed control of switched reluctance motor via fuzzy fast terminal sliding-mode control (Cited by: 44, Year: 2019) ⚡📊
  • A novel dynamic observer and torque ripple minimization via fuzzy logic for SRM drives (Cited by: 32, Year: 2009) 🔄🔧
  • Tooth profile modification and its effect on spur gear pair vibration in presence of localized tooth defect (Cited by: 27, Year: 2012) ⚙️🔍
  • A novel sensorless SRM drive via hybrid observer of current sliding mode and flux linkage (Cited by: 23, Year: 2007) 🚗🔩
  • Torque estimation of sensorless SRM drive using adaptive-fuzzy logic control (Cited by: 18, Year: 2016) 🧠⚙️
  • High performance SRM drive with hybrid observer and fuzzy logic torque ripple minimization (Cited by: 15, Year: 2007) 🔋🔧
  • Conversion of shaded-pole induction motor to switched reluctance motor and effects of pole shoe and notch on SRM noise (Cited by: 13, Year: 2013) 🔊🔩
  • Single phase application of space vector pulse width modulation for shunt active power filters (Cited by: 13, Year: 2007) ⚡🔌
  • Robust speed control of switched reluctance motor drive based on full order terminal sliding mode control (Cited by: 11, Year: 2020) ⚙️🛠
  • A novel control-rod drive mechanism via electromagnetic levitation in MNSR (Cited by: 10, Year: 2014) ⚡🔮
  • Sensorless drive for switched reluctance motor by adaptive hybrid sliding mode observer without chattering (Cited by: 9, Year: 2018) ⚙️🔧
  • Acoustic noise reduction of switched reluctance motor drives (Cited by: 7, Year: 2011) 🔇🔧
  • Improved analytical nonlinear model for switched reluctance motor using Gaussian distribution probability density function (Cited by: 6, Year: 2018) 🧠🔩
  • Minimizing torque ripple in a brushless DC motor with fuzzy logic: applied to control rod driving mechanism of MNSR (Cited by: 5, Year: 2015) ⚡🔧

 

Prabhakar M | Engineering | Best Researcher Award

Dr. Prabhakar M  | Engineering | Best Researcher Award | Engineering | Best Researcher Award

Professor, Vellore Institute of Technology, Chennai,  India

M. Prabhakar is a seasoned academic with over 23 years of experience in teaching and research in electrical engineering. He holds a B.E. in Electrical and Electronics Engineering, an M.E. in Power Electronics and Drives, and a Ph.D. in Electrical Engineering. Currently a professor at Vellore Institute of Technology (VIT), Chennai, he has made significant contributions to the fields of power electronics, DC-DC converters, and DC microgrids, with over 50 published research articles. He has been actively involved in the Centre of Smart Grid Technologies and has received a seed grant of Rs. 4.53 lakhs to support his research. In recognition of his work, he has received the Research Award from VIT every year since 2012, and the Outstanding Teacher Award in 2009. His achievements in research, teaching, and securing funding demonstrate his strong qualifications, making him an excellent candidate for the Research for Best Researcher Award.

Profile:

Education

M. Prabhakar’s educational background demonstrates a strong commitment to the field of electrical engineering. He earned his Bachelor of Engineering (B.E.) degree in Electrical and Electronics Engineering from the University of Madras, Chennai, in 1998. Building on this foundation, he pursued a Master of Engineering (M.E.) in Power Electronics and Drives from Bharathidasan University, Tiruchirappalli, which he completed in 2000. His academic journey culminated in 2012 with a Ph.D. in Electrical Engineering from Anna University, Chennai. These degrees represent his deep expertise in the domains of power electronics and electrical systems, establishing the knowledge base from which his research has flourished. His educational progression highlights a focused pursuit of specialization in power electronics, further enhanced by practical and theoretical insights gained throughout his academic career. Prabhakar’s qualifications position him as an expert in his field, equipping him with the necessary foundation to drive impactful research and academic contributions.

Professional Experiences

M. Prabhakar brings over 23 years of professional experience in academia, combining teaching, research, and leadership in the field of electrical engineering. He began his career as an educator after earning his M.E. in Power Electronics and Drives in 2000. His extensive experience includes his roles as Associate Professor at Vellore Institute of Technology (VIT) since 2012, and later, Professor since 2019. He is actively involved in research related to power electronics, DC-DC converters, and microgrids. His engagement with the Centre of Smart Grid Technologies from 2022 onwards showcases his contributions to advancing energy systems. M. Prabhakar has co-authored over 50 research articles in high-impact journals and conferences and serves as a reviewer for numerous reputable journals. His expertise has been acknowledged through several awards, including the VIT Research Award, which he has received annually since 2012, and the Outstanding Teacher Award in 2009.

Research Skills

M. Prabhakar possesses a diverse set of research skills and experiences honed over more than 23 years in academia. His expertise in power electronics and DC microgrids is complemented by a robust publication record, with over 50 research articles in high-impact journals and conferences. He has successfully led various research projects, including securing a seed grant of Rs. 4.53 lakhs from Vellore Institute of Technology. As an active reviewer for esteemed journals, he critically engages with cutting-edge research, enhancing his analytical skills. His experience extends to mentoring students and collaborating with peers, fostering an environment of innovation and inquiry. Additionally, his involvement with the Centre of Smart Grid Technologies further enriches his research profile, enabling him to explore practical applications of his work. Collectively, these experiences underscore his capability as a researcher dedicated to advancing knowledge in electrical engineering and power systems.

Award And Recognitions

M. Prabhakar is a distinguished academic with over 23 years of teaching and research experience in electrical engineering. He has been recognized with several prestigious awards, including the Outstanding Teacher Award in 2009 for his exceptional contributions to education. Since 2012, he has received the Research Award from Vellore Institute of Technology (VIT) for his impactful research contributions, demonstrating his commitment to advancing knowledge in power electronics and smart grid technologies. His extensive publication record includes over 50 co-authored articles in high-impact journals and conferences, showcasing his active involvement in the research community. Additionally, he secured a seed grant of Rs. 4.53 lakhs to support his innovative research projects. M. Prabhakar’s accolades reflect his dedication to excellence in teaching, research, and community impact, solidifying his reputation as a leading figure in the field of electrical engineering.

Conclusion

M. Prabhakar’s extensive qualifications, coupled with over 23 years of teaching and research experience, establish him as a leading candidate for the Research for Best Researcher Award. His impressive academic background includes a B.E., M.E., and Ph.D. in Electrical Engineering, demonstrating his deep commitment to the field. Prabhakar’s contributions to power electronics, DC-DC converters, and DC microgrids are underscored by the publication of over 50 research articles in high-impact journals. His consistent recognition through the Research Award at Vellore Institute of Technology since 2012 and the Outstanding Teacher Award in 2009 further validate his influence as an educator and researcher. Additionally, securing a significant seed grant and his association with the Centre of Smart Grid Technologies highlight his innovative approach to research. Overall, M. Prabhakar’s exceptional academic credentials, research contributions, and ongoing dedication to advancing electrical engineering make him an exemplary choice for this prestigious award.

Publication Top Notes

  • Article
    Title: Non-isolated high gain DC–DC converter with ripple-free source current
    Authors: Valarmathy, A.S., Prabhakar, M.
    Journal: Scientific Reports
    Year: 2024
    Citations: 1
  • Book Chapter
    Title: High gain DC-DC converters for photovoltaic applications
    Authors: Prabhakar, M., Revathi, B.S.
    Book: Power Converters, Drives and Controls for Sustainable Operations
    Year: 2024
    Citations: 0
  • Editorial
    Title: Modelling, design and control of power electronic converters for smart grids and electric vehicle applications
    Authors: Prabhakar, M., Tofoli, F.L., Elgendy, M.A., Wang, H.
    Journal: IET Power Electronics
    Year: 2024
    Citations: 0
  • Article
    Title: Reconfigurable high step-up DC to DC converter for microgrid applications
    Authors: Tewari, N., Paul, N., Jayaraman, M., Prabhakar, M.
    Journal: IET Power Electronics
    Year: 2024
    Citations: 6
  • Article
    Title: High gain interleaved boost-derived DC-DC converters – A review on structural variations, gain extension mechanisms and applications
    Authors: Valarmathy, A.S., Prabhakar, M.
    Journal: e-Prime – Advances in Electrical Engineering, Electronics and Energy
    Year: 2024
    Citations: 2
  • Article (in Press)
    Title: Dual-input step-up switched-capacitor multilevel inverter with reduced voltage stress on devices
    Authors: Ghelichi, A., Varesi, K., Zeinaly, A., Prabhakar, M.
    Journal: International Journal of Circuit Theory and Applications
    Year: 2024
    Citations: 0
  • Article (in Press)
    Title: High gain interleaved DC-DC converter with ripple-free input current and low device stress
    Authors: Valarmathy, A.S., Mahalingam, P., Prabhakar, M.
    Journal: International Journal of Electronics
    Year: 2024
    Citations: 1
  • Conference Paper
    Title: Performance Analysis of Asymmetric High Gain Multi-Input Converter under Widely Fluctuating Inputs
    Authors: Mohana Preethi, V., Prabhakar, M., Kumar, N.S.
    Conference: ACM International Conference Proceeding Series
    Year: 2023
    Citations: 0
  • Book Chapter
    Title: Interleaved Cubic Boost Converter
    Authors: Ram, C.S., Shiggavi, A.B., Maharaajan, A.A., Thiyagarajan, R.A., Prabhakar, M.
    Book: IoT and Analytics in Renewable Energy Systems (Volume 2): AI, ML and IoT Deployment in Sustainable Smart Cities
    Year: 2023
    Citations: 1
  • Conference Paper
    Title: Design and Simulation of Coupled Inductor-Based Asymmetric High Gain Multi-input DC–DC Converters
    Authors: Preethi, V.M., Prabhakar, M.
    Conference: Lecture Notes in Electrical Engineering
    Year: 2023
    Citations: 1