Amin Foyouzati | Civil Engineering | Best Researcher Award

Dr. Amin Foyouzati | Civil Engineering | Best Researcher Award

 Mr. Amin Foyouzati, Sharif University of Technology, Iran

Mr. Amin Foyouzati is a structural engineering researcher at Sharif University of Technology, specializing in seismic analysis and retrofitting of concrete structures. With a strong academic foundation and hands-on experience in seismic hazard studies and structural strengthening techniques, Amin continues to contribute to the advancement of seismic safety measures. His research aims to improve the resilience of structures in earthquake-prone regions, combining innovative design and cost-effective solutions.

Publication profile

Orcid Profile

Educational Background

Mr. Amin Foyouzati obtained his MSc in Structural Engineering from Sharif University of Technology in 2020. His thesis, “Investigation on Seismic Behavior of Concrete Structures with Self Centered, Post-Tensioned Shear Walls System,” was supervised by Distinguished Professor Alireza Khaloo. Prior to this, he earned his BSc in Civil Engineering from Shahid Bahonar University of Kerman in 2018, working on steel and reinforced concrete structures.

Work Experience

Amin has been an active researcher at Sharif University of Technology since 2018. Under the supervision of prominent professors like Prof. Alireza Khaloo, Prof. Fayaz Rahimzadeh Rofooei, and Horno Engineering Group Co., he has conducted significant research projects on the seismic behavior of self-centering hybrid wall systems, the development of artificial neural network models for response prediction, and innovative seismic strengthening techniques for existing concrete structures. His work has focused on both practical and theoretical aspects of structural engineering, with strong contributions to the field of seismic hazard analysis and mitigation strategies.

Research Focus

Amin’s research interests lie in the seismic behavior of concrete structures, with a particular emphasis on self-centering wall systems, seismic hazard assessments, and innovative seismic strengthening techniques for concrete frames. His work spans from developing new analytical methods to utilizing passive dampers in structures to enhancing seismic performance in high-risk seismic zones.

Publication Top Notes

Foyouzati, A., Khaloo, AR. (2024). Comprehensive analytical studies on seismic performance of concrete structures equipped with self-centered hybrid wall system in moderate to high seismic hazard zones. Bulletin of Earthquake Engineering, 22, 3979–4002. https://doi.org/10.1007/s10518-024-01913-0

Foyouzati, A., Khaloo, AR. (2024). Seismic performance assessment and fragility analysis of concrete structures equipped with self-centered hybrid wall systems. Sustainable and Resilient Infrastructure. https://doi.org/10.1080/23789689.2024.2403866

Foyouzati, A., Khaloo, AR. Response prediction of self-centered concrete walls using artificial neural networks. Sustainable and Resilient Infrastructure, In Revision.

Foyouzati, A., Rahimzadeh Rofooei, F. (2023). Seismic hazard assessment studies based on developed deterministic and probabilistic approaches for the central-east of Iran region. World Journal of Engineering, 1-14. https://doi.org/10.1108/WJE-04-2023-0100

Foyouzati, A. (2023). Analytical study on seismic strengthening of reinforced concrete frame equipped with steel damping system with shear mechanism fuse. Asian Journal of Civil Engineering, 25, 1115–1127. https://doi.org/10.1007/s42107-023-00820-0

Foyouzati, A. (2024). Probabilistic seismic hazard assessment studies on the central-east of Iran – Kerman region. Iranian Journal of Science and Technology Transactions of Civil Engineering. https://doi.org/10.1007/s40996-024-01428-3

Conclusion

In summary, Mr. Amin Foyouzati’s academic credentials, extensive research experience, prolific publication record, innovative methodologies, and commitment to community impact position him as an exceptional candidate for the Research for Best Researcher Award. His contributions to the field of civil engineering are not only impressive but also vital for enhancing public safety and advancing engineering practices. Recognizing his work with this award would not only honor his achievements but also inspire further innovation in the field.

 

 

Mohammad Hejri | Engineering | Best Researcher Award

Dr. Mohammad Hejri | Engineering | Best Researcher Award

Associate Professor at Sahand University of Technology ,Iran

Dr. Mohammad Hejri is an Associate Professor in the Department of Electrical Engineering at Sahand University of Technology in Tabriz, Iran. He holds a Ph.D. in Electrical Engineering from Sharif University of Technology and the University of Cagliari, achieving a distinguished GPA of 17.37/20. Dr. Hejri has received numerous accolades, including the International Young Scientist Awards and recognition as the top candidate for a postdoctoral research position at KTH Royal Institute of Technology. His research focuses on the modeling and control of power electronics converters, reflected in his extensive publication record in reputable journals. Dr. Hejri has also contributed to academia through various teaching positions and reviewing activities for prestigious journals, showcasing his commitment to education and the advancement of electrical engineering.

Publication profile

Scopus Profile

Educational Background

Mohammad Hejri has a robust educational background in Electrical Engineering, highlighted by his double doctoral degree obtained from Sharif University of Technology in Tehran, Iran, and the University of Cagliari in Italy between 2005 and 2010. He achieved a commendable GPA of 17.37/20 for his Ph.D. studies, focusing on Hybrid Modeling and Control of Power Electronics Converters. Prior to his doctoral studies, he earned his Master’s degree in Electrical Engineering from Sharif University of Technology with an impressive GPA of 17.72/20. He completed his Bachelor’s degree in Electrical Engineering at Tabriz University, where he ranked 2nd among 140 students in his program with a GPA of 16.97/20. His academic excellence is further underscored by his top rankings in various entrance examinations throughout his educational journey.

Teaching and Research Experience

Mohammad Hejri is an accomplished academic with extensive teaching and research experience in Electrical Engineering. He has served as an Associate Professor at Sahand University of Technology since 2012, where he has taught undergraduate and graduate courses, including Electrical and Electronic Measurement, Optimization Fundamentals, and Power Electronics. Hejri has also been involved in curriculum development and has acted as a teaching assistant for various laboratory courses during his early career. His research, primarily focused on power electronics, control systems, and renewable energy integration, has resulted in numerous publications in prestigious journals and conference proceedings. Hejri’s dual Ph.D. in Electrical Engineering and Electronic and Computer Engineering reflects his commitment to advancing knowledge in his field, and his contributions have earned him recognition as a leading researcher. Additionally, he has engaged in various international research projects, further enhancing his expertise and fostering collaboration in the global scientific community.

Publication Top Notes

  • Title: Global Practical Stabilization of Discrete-time Switched Affine Systems: Application to Switching Power Converters
    Authors: Hejri, M.
    Year: 2021
    Citations: 3
  • Title: Global Practical Stabilization of Discrete-time Switched Affine Systems via Switched Lyapunov Functions and State-Dependent Switching Functions
    Authors: Hejri, M.
    Year: 2021
    Citations: 3
  • Title: Correction to ‘Global Practical Stabilization of Discrete-time Switched Affine Systems via a General Quadratic Lyapunov Function and a Decentralized Ellipsoid’
    Authors: Hejri, M.
    Year: 2022
    Citations: 2
  • Title: On the Well-Posedness, Equivalency, and Low-Complexity Translation Techniques of Discrete-time Hybrid Automaton and Piecewise Affine Systems
    Authors: Hejri, M., Mokhtari, H.
    Year: 2022
    Citations: 1
  • Title: Cascade Control System Design and Stability Analysis for a DC–DC Boost Converter with Proportional Integral and Sliding Mode Controllers and Using Singular Perturbation Theory
    Authors: Azarastemal, S., Hejri, M.
    Year: 2021
    Citations: 8

Conclusion

Mohammad Hejri is a highly qualified candidate for the Best Researcher Award, demonstrating exceptional academic performance, significant research contributions, and a commitment to teaching and mentorship. His recognition in the academic community, coupled with his extensive publication record, highlights his impact in the field of electrical engineering, particularly in power electronics and control systems.

Muhammad Haider Saleem | Material Science | Excellence in Innovation

Mr. Muhammad Haider Saleem | Material Science | Excellence in Innovation

Ghani Glass Limited, Pakistan

Muhammad Haider Saleem is a Pakistani chemist and researcher with expertise in the synthesis, characterization, and computational modeling of nanomaterials. Born and raised in Sheikhupura, Pakistan, he has focused his academic and professional career on materials science, particularly the innovative applications of f-block and d-block elements. His work spans diverse fields including optoelectronics, biomedical applications, and energy storage solutions. Saleem holds a Master of Philosophy in Chemistry from Government College University, Lahore, and has gained substantial experience as a Senior Chemist in Research & Development at Ghani Glass Limited. His research has been published in several peer-reviewed journals, highlighting his contributions to enhancing material properties for industrial and technological applications. With hands-on experience in leading-edge laboratory techniques and a passion for innovation, Saleem continues to contribute to advancements in materials science and nanotechnology.

Publication profile

Google Scholar

Educational Background

Muhammad Haider Saleem completed his Master of Philosophy (MPhil) in Chemistry from Government College University, Lahore, in 2022. His thesis, titled “Decolorization of Green Tint of High Iron Soda Lime Glass using Rare Earth Metal Nanoparticles,” explored innovative ways to modify glass for improved optical and physical properties. He earned a Bachelor’s degree in Chemistry from the University of the Punjab, Lahore, in 2017, which provided him with a strong foundation in natural sciences and materials science. In addition to his core education, Saleem has broadened his skill set through certifications such as a Diploma in Data Science from Al-Khawarizmi Institute of Computer Science (UET Lahore) and certification in SEO from Digiskills. His academic journey has been marked by his focus on nanomaterials and their applications in real-world industrial contexts, including optoelectronics, energy storage, and biomedical technologies.

Work Experience

Muhammad Haider Saleem has significant professional experience as a Senior Chemist in the Research & Development (R&D) department at Ghani Glass Limited, where he has worked since 2017. His role involves the analysis and improvement of glass materials, particularly focusing on the development of new float glass colors and optoelectronic applications using lanthanides. He has a deep understanding of advanced laboratory instruments such as ED-XRF, SEM, and XRD, and has contributed to maintaining the company’s ISO-9001 and EMS-14001 standards. Prior to this, Saleem worked as QC Shift Incharge at Rupali Polyester Limited, where he was responsible for maintaining polymer quality through raw material analysis and polymer stoichiometry. His industrial experience complements his academic knowledge, allowing him to apply research insights directly to manufacturing and quality control processes. His work in both roles has centered on advancing innovative materials for practical and commercial use.

Research Focus

Muhammad Haider Saleem’s research focuses on the synthesis, characterization, and computational modeling of nanomaterials, particularly those based on f-block and d-block elements. His work aims to enhance the optical, electronic, and physical properties of materials for applications in optoelectronics, energy storage, and biomedical technologies. Saleem is especially interested in modified glasses for optoelectronics and biomedical uses, multifunctional ceramics, and the development of nanomaterials for optical fiber and laser applications. His research also extends to bio-imaging and nano-thermometry, where stable upconversion nanoparticles (UCNPs) are used for advanced imaging techniques. Another significant aspect of his work involves the development of supercapacitors with enhanced charge storage capacities through the modification of electrode materials. Additionally, Saleem has been researching ways to improve the efficiency of perovskite solar cells, contributing to the ongoing global effort to enhance sustainable energy solutions.

Skills:

Muhammad Haider Saleem possesses a diverse set of technical skills that span advanced laboratory techniques, computational modeling, and data analysis. He is proficient in the operation of key scientific instruments such as ED-XRF (CG-NEX I, Rigaku), XRD (ARL EQUINOX 5000), and SEM (FEI INSPECT S50), which are essential for material characterization and analysis. His expertise extends to spectroscopic techniques, including UV/Vis spectroscopy, fluorescence spectroscopy, and FTIR, used in assessing optical and chemical properties. Saleem is also skilled in electrochemical techniques, utilizing potentiostats for charge storage and corrosion testing.

Conclusion

Given his advanced research, relevant work experience, peer-reviewed publications, and proficiency with high-level scientific tools, Muhammad Haider Saleem seems well-suited for a recognition or award in “Excellence in Innovation.” His work in developing innovative nanomaterials for optoelectronics, biomedical applications, and energy storage reflects significant contributions to his field.

Publication Top Notes

Title: An innovative approach towards Decolorization of tint and Enhancing the Optical & Physical Properties of High iron Na₂O-CaO-SiO₂ glass by co-doping with Ce⁴⁺/Nd³⁺
Authors: MH Saleem, S Ali, S Ali
Journal: Optical Materials
Citation: 116160
Year: 2024

Title: An Innovative Approach of Decolorization of Tint and Enhancing the Optical & Physical Properties of High Iron Na₂O-CaO-SiO₂ Glass by Doping with Ce⁴⁺/Nd³⁺: An Experimental and …
Authors: MH Saleem, S Ali, S Ali
Citation: Available at SSRN 4379211
Year: 2024

Title: Optical & Physical Properties of High Iron Na₂O-CaO-SiO₂ Glasses on Decolorization of Tint by Doping with Rare Earth Metals (CeO₂/Nd₂O₃): An Experimental and Comparative Study
Authors: MH Saleem, S Ali, S Ali
Citation: Available at SSRN 4347488
Year: 2024

 

Mohamad Zarei Binabaj | Engineering | Best Researcher Award

Dr. Mohamad Zarei Binabaj | Engineering | Best Researcher Award

Researcher at Shahid Beheshti University, Iran

Dr. Mohamad Zarei Binabaj, born in 1983 in Mashad, Iran, is an accomplished researcher in nuclear engineering with a Ph.D. from Shahid Beheshti University in Tehran. His research focuses on advanced nuclear reactor modeling and control, particularly under challenging conditions such as xenon oscillations. He has a strong publication record with over 24 peer-reviewed articles in leading journals and serves as a topic editor for Frontiers in Energy Research: Nuclear Energy. Known for his expertise in multi-physics kinetics modeling, detector physics, and nonlinear control systems, he is proficient in MATLAB, Simulink, and nuclear engineering software. Fluent in English and French, Dr. Zarei actively contributes to the academic community as a reviewer for several respected journals and has experience teaching and supervising students. His contributions make him a well-regarded figure in the field of nuclear reactor engineering.

Publication profile

Google Scholar

Educational Background

Mohamad Zarei Binabaj holds an impressive educational background in engineering, with a Ph.D. in Nuclear Reactor Engineering from Shahid Beheshti University in Tehran, Iran, obtained in 2017. His doctoral research focused on the robust nonlinear control of nuclear reactor load following operations amidst Xenon oscillations. Prior to his Ph.D., he completed a Master’s degree in Nuclear Reactor Engineering at the same institution in 2012, where he explored the inherent safety features of next-generation IV lead-cooled fast reactors. His academic journey began with a Bachelor’s degree in Electrical Engineering from Tehran University in 2006, laying a solid foundation for his expertise in nuclear engineering and control systems.

Teaching and Research Experience

Mohamad Zarei Binabaj has a solid foundation in both teaching and research within the field of nuclear engineering. As a consulting instructor at Shahid Beheshti University, he guides students in their thesis projects, focusing on nuclear reactor dynamics and analysis. He has also served as a teaching assistant for various courses, including reactor physics, numerical methods, and linear control systems, showcasing his ability to communicate complex concepts effectively. In terms of research, Zarei has an extensive publication record with over 24 articles in esteemed journals, covering topics such as nonlinear control, reactor dynamics, and safety features in advanced reactors. His active participation in reviewing manuscripts for leading journals further highlights his commitment to advancing the field and contributing to the academic community. Overall, his teaching and research experiences underscore his expertise and dedication to nuclear engineering education and innovation.

Publication Top Notes

  • A physically based PID controller for the power maneuvering of nuclear reactors
    • Authors: M. Zarei
    • Year: 2020
    • Citations: 22
  • A multi-point kinetics based MIMO-PI control of power in PWR reactors
    • Authors: M. Zarei
    • Year: 2018
    • Citations: 22
  • Robust PID control of power in lead cooled fast reactors: A direct synthesis framework
    • Authors: M. Zarei, R. Ghaderi, N. Kojuri, A. Minuchehr
    • Year: 2017
    • Citations: 19
  • Space independent xenon oscillations control in VVER reactor: A bifurcation analysis approach
    • Authors: M. Zarei, R. Ghaderi, A. Minuchehr
    • Year: 2016
    • Citations: 12
  • Nonlinear dynamics and control in molten salt reactors
    • Authors: M. Zarei
    • Year: 2018
    • Citations: 10

Conclusion

Dr. Zarei’s qualifications in nuclear engineering, demonstrated expertise, and active engagement in academia make him a strong candidate for the Best Researcher Award. With his current trajectory and potential expansions in research breadth, he embodies excellence in his field.

Zhipeng Zhao | Engineering | Best Researcher Award

Assist Prof Dr. Zhipeng Zhao | Engineering | Best Researcher Award

Assistant Professor, Tongji University, China

Dr. Zhipeng Zhao, currently an Assistant Professor at Tongji University, showcases an impressive academic and research profile, making him a strong candidate for the Research for Best Researcher Award. With a Ph.D. in Civil Engineering and a GPA of 90.30, he has garnered several accolades, including recognition among the World’s Top 2% Scientists in 2024. His research interests focus on artificial intelligence in structural health monitoring and innovative anti-seismic systems, contributing significantly to advancements in civil engineering. He has published numerous peer-reviewed articles, demonstrating a commitment to advancing knowledge in his field. His collaborative work has resulted in impactful research, earning him prestigious fellowships and awards, such as the JSPS Foreign Research Fellow and Shanghai Leading Talents recognition. Dr. Zhao’s combination of research excellence, innovation, and leadership positions him as an exemplary figure in civil engineering, underscoring his suitability for this prestigious award.

Profile:

Education

Dr. Zhipeng Zhao earned his Ph.D. in Civil Engineering from Tongji University, Shanghai, China, in 2021, where he achieved an impressive GPA of 90.30/100. His academic journey began at the same institution, where he completed his Bachelor’s degree in Civil Engineering in 2017, graduating with a remarkable GPA of 93.00/100. During his doctoral studies, Dr. Zhao focused on advanced topics in structural health monitoring and vibration control, demonstrating a commitment to enhancing the resilience of civil engineering structures. His educational background has provided him with a solid foundation in both theoretical and practical aspects of civil engineering, equipping him with the skills necessary to tackle complex engineering challenges. Dr. Zhao’s strong academic performance and rigorous training reflect his dedication to excellence in the field, positioning him as a valuable contributor to research and innovation in civil engineering.

 

Research Skills

Dr. Zhipeng Zhao possesses exceptional research skills that significantly contribute to the advancement of civil engineering, particularly in artificial intelligence-based structural health monitoring and vibration control. His ability to develop innovative anti-seismic structural systems is demonstrated through numerous peer-reviewed publications, reflecting a strong command of both theoretical and practical applications. Dr. Zhao excels in employing cutting-edge methodologies for ground motion simulation, allowing for accurate predictions and enhanced structural safety. His collaborative work as a corresponding author on various high-impact journals showcases his capacity to lead multidisciplinary teams and drive impactful research initiatives. Additionally, his recognition as one of the world’s top 2% scientists and several prestigious awards underscore his commitment to excellence in research. Overall, Dr. Zhao’s research skills are characterized by a blend of creativity, technical proficiency, and a keen understanding of contemporary challenges in civil engineering, making him a leading candidate for the Research for Best Researcher Award.

 

Professional Experiences

Dr. Zhipeng Zhao, currently an Assistant Professor at Tongji University, has cultivated a distinguished career in civil engineering, particularly in structural health monitoring and vibration control. He has served as a JSPS Foreign Research Fellow at Tohoku University, Japan, where he engaged in advanced research from 2022 to 2023. Prior to this, he completed a postdoctoral fellowship at the Hong Kong Polytechnic University and City University of Hong Kong. Dr. Zhao’s academic journey began with a Bachelor’s and a Ph.D. in Civil Engineering from Tongji University, where he excelled in his studies. His remarkable contributions to the field are underscored by multiple honors, including recognition as one of the world’s top 2% scientists in 2024 and the prestigious Shanghai Leading Talents (Overseas) Young Talents award in 2022. With an extensive publication record, Dr. Zhao is a leader in innovative anti-seismic structural systems.

Award And Recognition

Dr. Zhipeng Zhao, an Assistant Professor at Tongji University, has garnered significant accolades for his groundbreaking research in civil engineering, particularly in artificial intelligence-based structural health monitoring and seismic resilience. Recognized among the world’s top 2% of scientists in 2024, he has received prestigious awards, including the Shanghai Leading Talents (Overseas) Young Talents in 2022 and the Tongji University’s top ten scientific achievements with transformative potential in 2023. His work has been frequently cited, earning him the Most Cited Articles recognition in Engineering Structures from 2018 to 2021. Notably, Dr. Zhao was honored with first and second prizes for outstanding papers at the National Structural Engineering Academic Conference in 2018 and 2023, respectively, further solidifying his reputation as a leading researcher in his field. His exceptional contributions demonstrate a commitment to advancing civil engineering and improving infrastructure resilience against natural disasters.

Conclusion

In summary, Dr. Zhipeng Zhao exemplifies excellence in civil engineering, particularly in the fields of artificial intelligence-based structural health monitoring and seismic control systems. His impressive academic background, highlighted by a Ph.D. from Tongji University, is complemented by numerous accolades, including recognition as one of the world’s top 2% scientists in 2024. Dr. Zhao’s innovative contributions, reflected in over 40 peer-reviewed publications, demonstrate his commitment to advancing structural resilience against seismic activities. His research not only addresses critical challenges in civil engineering but also significantly impacts the safety and sustainability of urban infrastructure. As an Assistant Professor at Tongji University and a recipient of multiple prestigious awards, Dr. Zhao’s ongoing research initiatives position him as a leader in the field. His dedication to enhancing structural engineering practices makes him a worthy candidate for the Research for Best Researcher Award.

Publication Top Notes

  • Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system
    R. Zhang, Z. Zhao, K. Dai
    Engineering Structures, 180, 29-39, 221 citations, 2019
  • Damping enhancement principle of inerter system
    R. Zhang, Z. Zhao, C. Pan, K. Ikago, S. Xue
    Structural Control and Health Monitoring, 27(5), e2523, 147 citations, 2020
  • Seismic response mitigation of structures with a friction pendulum inerter system
    Z. Zhao, R. Zhang, Y. Jiang, C. Pan
    Engineering Structures, 193, 110-120, 125 citations, 2019
  • A tuned liquid inerter system for vibration control
    Z. Zhao, R. Zhang, Y. Jiang, C. Pan
    International Journal of Mechanical Sciences, 164, 105171, 108 citations, 2019
  • Optimal design based on analytical solution for storage tank with inerter isolation system
    Y. Jiang, Z. Zhao, R. Zhang, D. De Domenico, C. Pan
    Soil Dynamics and Earthquake Engineering, 129, 105924, 91 citations, 2020
  • Optimal design of an inerter isolation system considering the soil condition
    Z. Zhao, Q. Chen, R. Zhang, C. Pan, Y. Jiang
    Engineering Structures, 196, 109324, 76 citations, 2019
  • Energy dissipation mechanism of inerter systems
    Z. Zhao, Q. Chen, R. Zhang, C. Pan, Y. Jiang
    International Journal of Mechanical Sciences, 105845, 74 citations, 2020
  • Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks
    R. Zhang, Z. Zhao, C. Pan
    Soil Dynamics and Earthquake Engineering, 114, 639-649, 70 citations, 2018
  • Impact of soil–structure interaction on structures with inerter system
    Q. Chen, Z. Zhao, R. Zhang, C. Pan
    Journal of Sound and Vibration, 433, 1-15, 65 citations, 2018
  • A particle inerter system for structural seismic response mitigation
    Z. Zhao, R. Zhang, Z. Lu
    Journal of the Franklin Institute, Engineering and Applied Mathematics, 356, 54 citations, 2019
  • Comfort based floor design employing tuned inerter mass system
    Q. Chen, Z. Zhao, Y. Xia, C. Pan, H. Luo, R. Zhang
    Journal of Sound and Vibration, 458, 143-157, 47 citations, 2019
  • Displacement mitigation–oriented design and mechanism for inerter-based isolation system
    Z. Zhao, R. Zhang, N.E. Wierschem, Y. Jiang, C. Pan
    Journal of Vibration and Control, 27(17-18), 1991-2003, 46 citations, 2021
  • Seismic performance upgrading of containment structures using a negative-stiffness amplification system
    Z. Zhao, Y. Wang, X. Hu, D. Weng
    Engineering Structures, 262, 114394, 42 citations, 2022
  • A negative stiffness inerter system (NSIS) for earthquake protection purposes
    Z. Zhao, Q. Chen, R. Zhang, Y. Jiang, C. Pan
    Smart Structures and Systems, 26(4), 481-493, 33 citations, 2020
  • Enhanced energy dissipation benefit of negative stiffness amplifying dampers
    Z. Zhao, Q. Chen, X. Hu, R. Zhang
    International Journal of Mechanical Sciences, 240, 107934, 32 citations, 2023
  • Input energy reduction principle of structures with generic tuned mass damper inerter
    Z. Zhao, R. Zhang, C. Pan, Q. Chen, Y. Jiang
    Structural Control and Health Monitoring, 28(1), e2644, 31 citations, 2021
  • Interaction of two adjacent structures coupled by inerter-based system considering soil conditions
    Z. Zhao, Q. Chen, R. Zhang, Y. Jiang, Y. Xia
    Journal of Earthquake Engineering, 26(6), 2867-2887, 28 citations, 2022
  • Seismic demand and capacity models, and fragility estimates for underground structures considering spatially varying soil properties
    Z. He, H. Xu, P. Gardoni, Y. Zhou, Y. Wang, Z. Zhao
    Tunnelling and Underground Space Technology, 119, 104231, 27 citations, 2022
  • Analytical optimization of the tuned viscous mass damper under impulsive excitations
    Z. Zhao, X. Hu, R. Zhang, Q. Chen
    International Journal of Mechanical Sciences, 228, 107472, 25 citations, 2022
  • Friction pendulum-strengthened tuned liquid damper (FPTLD) for earthquake resilience of isolated structures
    Z. Zhao, X. Hu, Q. Chen, Y. Wang, N. Hong, R. Zhang
    International Journal of Mechanical Sciences, 244, 108084, citations not specified.

Classio Mendiate | Engineering | Excellence in Research

Dr. Classio Mendiate | Engineering | Excellence in Research

Researcher,  University of Rwanda,  Mozambique

Classio João Mendiate is a senior transport consultant and researcher specializing in transport engineering and urban planning. He currently serves as a lecturer at the University of Rwanda and has extensive experience teaching undergraduate and postgraduate courses. Mendiate holds a Ph.D. in Transportation Planning from the Technical University of Madrid, where his research focused on cycling in Sub-Saharan Africa. He has published nine peer-reviewed journal articles and serves as a peer reviewer for international journals such as CITIES and Sustainability. His professional work includes leading major urban mobility projects like the Sustainable Urban Mobility Plan for Maputo and the TRANS-SAFE project funded by the European Union. Mendiate has earned several honors, including travel grants from the Volvo Research and Educational Foundation. His research contributions, professional expertise, and academic leadership make him a strong candidate for the Research for Excellence in Research Award.

Profile:

Education

Classio João Mendiate holds an impressive educational background that underpins his expertise in transport planning and engineering. He earned his Ph.D. from the Technical University of Madrid between 2017 and 2020, graduating with Distinction Cum Laude. His thesis focused on identifying key explanatory variables for cycling in Sub-Saharan Africa, particularly through a case study in Quelimane, Mozambique. Prior to his doctoral studies, Mendiate obtained a Master of Science in Geoinformation Science and Earth Observation from the University of Twente in the Netherlands from 2009 to 2011, specializing in urban planning. He completed his Bachelor’s degree in Architecture and Urban Planning at Eduardo Mondlane University in Mozambique between 1999 and 2005. His diverse educational experiences have equipped him with a solid foundation in both theoretical knowledge and practical applications in the field of transportation, enhancing his effectiveness as a researcher and educator.

 

Research Skills

Classio João Mendiate possesses a robust set of research skills that underpin his significant contributions to the field of transport engineering and planning. His extensive experience in data collection and analysis, particularly in urban mobility studies, enables him to identify key factors influencing transportation patterns in Sub-Saharan Africa. Proficient in advanced modeling techniques using tools such as PTV VISSIM and PTV Visum, he excels in traffic simulation and forecasting, ensuring accurate predictions that inform sustainable transport solutions. Mendiate’s ability to publish in peer-reviewed journals demonstrates his strong writing and analytical skills, effectively communicating complex research findings to diverse audiences. Additionally, his roles as a peer reviewer for international journals highlight his critical evaluation capabilities and commitment to enhancing the quality of academic research. Through supervising graduate students and leading collaborative projects, he fosters an environment of knowledge exchange, further enriching his research acumen and expanding his influence in the transportation research community.

 

Professional Experiences

Classio João Mendiate boasts extensive professional experience in the field of transport engineering and planning. Currently serving as a senior transport consultant at the Maputo Metropolitan Transport Agency (AMT), he leads critical initiatives such as the Sustainable Urban Mobility Plan for Greater Maputo, focusing on alleviating congestion and pollution. Additionally, Mendiate coordinates the TRANS-SAFE project, funded by Horizon Europe, aimed at transforming road safety in Africa through innovative living labs. His previous roles include significant contributions to the planning and design of Bus Rapid Transit systems in Maputo and traffic modeling for the city’s transport infrastructure. He has also led projects assessing the impact of urban form on walking behaviors across several Mozambican cities. Mendiate’s rich blend of consultancy and research has positioned him as a key figure in advancing urban mobility solutions in Mozambique, demonstrating his commitment to improving transportation systems and policies in the region.

Award And Recognition

Classio João Mendiate is a distinguished scholar and practitioner in the field of transport engineering and planning, recognized for his significant contributions to urban mobility research. He has received several prestigious accolades, including the OGE Fellowship from Mozambique’s Ministry of Education and the Netherlands Fellowship Program from the Dutch Ministry of Foreign Affairs. His commitment to advancing transportation knowledge has been acknowledged through travel grants from the UN Habitat Youth Program and the Volvo Research and Educational Foundation, allowing him to participate in vital conferences and workshops. Mendiate’s academic excellence is further highlighted by his Ph.D. awarded with distinction from the Technical University of Madrid and his role as a peer reviewer for prominent journals such as CITIES and Sustainability. His dedication to fostering innovative transport solutions and enhancing academic discourse positions him as a leading figure in the transportation sector, making him deserving of recognition for his exceptional achievements.

Conclusion

Classio João Mendiate exemplifies excellence in research and education in the field of transportation planning and engineering. His impressive academic background, highlighted by a Ph.D. with distinction from the Technical University of Madrid, lays a solid foundation for his contributions to urban mobility studies. Mendiate’s extensive publication record, comprising nine peer-reviewed articles, showcases his commitment to advancing knowledge in transport challenges specific to Sub-Saharan Africa. Additionally, his leadership roles in significant projects, such as the Sustainable Urban Mobility Plan for Maputo and the TRANS-SAFE initiative, underline his ability to translate research into impactful solutions. His involvement as a peer reviewer for reputable journals further emphasizes his influence within the academic community. Given his substantial achievements, innovative research, and dedication to teaching and mentoring the next generation of transport professionals, Mendiate is a highly deserving candidate for the Research for Excellence in Research Award, embodying the spirit of excellence and advancement in the transportation sector.

Publication Top Notes

  • Exploring cyclists’ travel behaviour in different attitudinal market segments: Case study of Quelimane, Mozambique
    • Authors: Mendiate, C.J., Nkurunziza, A., Soria-Lara, J.A., Monzon, A.
    • Journal: Urban, Planning and Transport Research
    • Year: 2023
    • Citations: 0
  • Cycling in sub-Saharan African cities: Differences and similarities with developed world cities
    • Authors: Mendiate, C.J., Nkurunziza, A., Soria-Lara, J.A., Monzon, A.
    • Journal: IATSS Research
    • Year: 2022
    • Citations: 7
  • Clusters of Bicycle Taxi Operators and their Main Service Operation Patterns: Case Study of Quelimane, Mozambique
    • Authors: Mendiate, C.J., Nkurunziza, A., Mendonça, F., Vicente, P.
    • Journal: East African Journal of Science, Technology and Innovation
    • Year: 2022
    • Citations: 0
  • Exploring Users’ perceptions of factors influencing cycling route choice: A perspective from Quelimane, Mozambique
    • Authors: Mendiate, C.J., Nkurunziza, A., Soria-Lara, J.A., Monzon, A.
    • Journal: Transportation Planning and Technology
    • Year: 2022
    • Citations: 0
  • Pedestrian travel behaviour and urban form: Comparing two small Mozambican cities
    • Authors: Mendiate, C.J., Nkurunziza, A., Machanguana, C.A., Bernardo, R.
    • Journal: Journal of Transport Geography
    • Year: 2022
    • Citations: 9
  • Identifying clusters of cycling commuters and travel patterns: The case of Quelimane, Mozambique
    • Authors: Mendiate, C.J., Soria-lara, J.A., Monzon, A.
    • Journal: International Journal of Sustainable Transportation
    • Year: 2020

Alok Jain | Engineering | Best Researcher Award

Dr. Alok Jain | Engineering | Best Researcher Award

Assistant Professor, Pandit Deendayal Energy University, Gandhinagar, Gujarat India

Dr. Alok Jain is an exceptional candidate for the Best Researcher Award, showcasing a robust educational background with a Ph.D. in Power Systems from IIT BHU, where he achieved a perfect CGPA. His research focuses on smart metering and power quality enhancement, leading to numerous publications in prestigious journals, emphasizing his commitment to advancing Electrical and Electronics Engineering. With diverse teaching experience as an Assistant Professor and significant involvement in professional organizations like IEEE, Dr. Jain demonstrates strong leadership and mentorship abilities. His practical experience in power systems, coupled with his role as a reviewer for international conferences, underscores his influence in the field. Dr. Jain’s innovative research contributions and dedication to professional growth make him an exemplary candidate for this award, reflecting his passion for learning and his impact on the engineering community.

Profile:

Education

Dr. Alok Jain holds a distinguished academic record, having earned a Ph.D. in Power Systems from the Indian Institute of Technology (IIT) BHU, Varanasi, where he achieved an exceptional CGPA of 10.00. Prior to his doctoral studies, he completed his Master of Engineering (M.E.) in Power Systems and Electric Drives at Thapar University, Patiala, securing a CGPA of 8.73. His foundational education includes a Bachelor of Technology (B.Tech) in Electrical and Electronics Engineering from UPTU, India, graduating with honors and a percentage of 76.82%. Additionally, Dr. Jain has pursued various technical certifications, including proficiency in Microsoft Office and successful completion of the GATE exam with a remarkable score of 94%. This strong educational background equips him with both theoretical knowledge and practical skills essential for advancing research in the field of electrical engineering.

Professional Experiences

Dr. Alok Jain is currently an Assistant Professor at PDPU, Gandhinagar, Gujarat, where he applies his extensive knowledge in Electrical and Electronics Engineering. Previously, he taught at the I.E.C. Group of Institutions in Greater Noida, specializing in subjects such as Power System Analysis and SCADA systems. His experience also includes serving as an External Expert for practical examinations at Guru Gobind Singh Indraprastha University and evaluating exam papers for various institutions affiliated with UPTU. Additionally, Dr. Jain has a strong industry background, having worked as a Graduate Engineer Trainee at BSES Yamuna Power Limited, where he focused on meter installations and quality assurance. His tenure as a Project Assistant at the CSIR-Central Road Research Institute further underscores his research capabilities. With a blend of academic and practical experience, Dr. Jain has successfully guided numerous students in their research projects, fostering the next generation of engineers.

Research Skills

The candidate possesses a robust array of research skills that significantly enhance their contributions to the field of Electrical and Electronics Engineering. Their expertise in advanced methodologies, including smart metering and power quality assessment, enables them to effectively tackle complex engineering challenges. Proficient in engineering software such as MATLAB, Simulink, and SCADA, they are adept at modeling and simulating power systems, which is crucial for developing innovative solutions. Their analytical skills are complemented by a strong foundation in programming languages like C and C++, allowing for the development of custom algorithms for energy management systems. Furthermore, their experience in conducting research projects, mentoring students, and publishing in peer-reviewed journals demonstrates their ability to communicate complex ideas clearly and collaborate effectively. Overall, these research skills position the candidate as a valuable asset in advancing knowledge and technology within their field.

 

Award And Recognition

Dr. Alok Jain is a distinguished researcher in the field of Electrical and Electronics Engineering, holding a Ph.D. in Power Systems from IIT BHU. With a commendable academic record and extensive teaching experience, he has contributed significantly to the advancement of smart grid technologies and power quality enhancement. His research, including publications in high-impact journals and presentations at international conferences, reflects his commitment to innovation and excellence. Dr. Jain’s work on smart metering and renewable energy systems has garnered recognition, highlighting his expertise and influence within the engineering community. As an active member of IEEE and a reviewer for prestigious conferences, he plays a vital role in fostering knowledge and collaboration in his field. His dedication to research and education positions him as a leading figure in Electrical Engineering, making him a worthy recipient of the Best Researcher Award.

 

Conclusion

The candidate exemplifies the qualities of an exceptional researcher, making them highly deserving of the Best Researcher Award. Their academic journey, marked by a Ph.D. in Power Systems from IIT BHU and a strong record of performance in their studies, reflects a deep commitment to the field of Electrical and Electronics Engineering. The candidate’s significant research contributions, particularly in smart metering and power quality enhancement, address critical challenges in contemporary energy systems. Their extensive experience as an Assistant Professor and active participation in professional organizations, such as IEEE, highlight their leadership and dedication to fostering innovation. Furthermore, their impressive publication record in high-impact journals demonstrates their influence and commitment to advancing knowledge within the field. Collectively, these attributes underscore their potential to make substantial contributions to electrical engineering, warranting recognition as a leading researcher in their discipline.

 

Publication Top Notes

  1. Monitoring, Control, and Protection of Radial Distribution Networks by Using a Two‐Level Control Architecture
  2. A State-of-the-Art on Power Quality Enhancement Techniques: Present Scenario and Future Challenges
  3. Improvement of the Dynamic Performance of an Islanded DC Microgrid Using Optimized Virtual Inertia
  4. Operation of DC Drive by Solar Panel Using Maximum Power Point Tracking Technique
  5. Optimal Scheduling of an Islanded Microgrid with Complex Impedances Considering Load Demand and Renewable Power Uncertainties
  6. A Communication-assisted Scheme in Radial Distribution Systems Using Phasor Measurement Units
  7. Micro-phasor Measurement Units (μPMUs) and Its Applications in Smart Distribution Systems
  8. Implementation Techniques for Frequency Phasor Estimation in Phasor Measurement Units (PMUs)
  9. Analysis of Effectiveness of SSSC in Transmission Network Using PI Controlled Technique
  10. Changes & Challenges in Smart Grid Towards Smarter Grid
  11. Implementation of Automatic Meter Reading Technique Using SYNC 2000 & SYNC 5000 in Indian Power System
  12. Performance of Hybrid Wind-Microturbine Generation System in Isolated Mode

 

 

 

Sawsan Dagher | Engineering | Best Researcher Award

Sawsan Dagher | Engineering | Best Researcher Award

Assist Prof Dr Sawsan Dagher, Abu Dhabi Polytechnic, United Arab Emirates

Assist. Prof. Dr. Sawsan Dagher appears to be a strong candidate for the “Best Researcher Award” based on the following factors:

Publication profile

google scholar

Research Experience

Conducted extensive research during her postdoctoral fellowship and as a researcher at UAE University, particularly in materials science and nanotechnology. Expertise in designing and fabricating microfluidic systems, solar cells, and photocatalysts, demonstrating innovation in renewable energy and environmental applications.

Education

Ph.D. in Materials Science & Engineering from UAEU, with a strong academic record and impactful thesis on quantum dot solar cells.

Research Output

She has numerous publications in high-impact journals. Notable works include studies on the synthesis of nanoparticles and photocatalytic removal of pollutants, as well as developing magnetic separation devices for biomedical applications. Her publications have been well-cited, reflecting the relevance and influence of her research within the scientific community.

Awards and Recognition

Dr. Dagher has been recognized with several prestigious awards, such as the Outstanding Research Award from IEEE in 2020 and Best Paper Awards at multiple international conferences, which underscore her research excellence and contributions to her field.

Contribution to Education and Professional Development

In addition to her research, Dr. Dagher has demonstrated a commitment to student development through her teaching and mentoring roles at Abu Dhabi Polytechnic. Her involvement in curriculum development and on-job training coordination showcases her leadership in shaping the next generation of engineers and researchers.

Professional Employment

Assistant Professor at Abu Dhabi Polytechnic since 2018, focusing on electromechanical engineering, teaching, mentoring, and program development. Previously served as On-Job Training Coordinator, fostering student internships and industry partnerships.

Conclusion

Dr. Dagher’s blend of teaching, research, and professional development activities, along with her recognition in the academic community, positions her as a strong candidate for the Best Researcher Award. Her ongoing contributions to innovative engineering solutions and her commitment to student development further underscore her suitability for this honor.

Publication top notes

Synthesis and optical properties of colloidal CuO nanoparticles

Microfluidics Based Magnetophoresis: A Review

Novel method for synthesis of Fe3O4@ TiO2 core/shell nanoparticles

Photocatalytic removal of methylene blue using titania-and silica-coated magnetic nanoparticles

Photo-thermal characteristics of water-based Fe3O4@ SiO2 nanofluid for solar-thermal applications

Microdevice for continuous flow magnetic separation for bioengineering applications

Bilirubin detoxification using different phytomaterials: characterization and in vitro studies

PbS/CdS heterojunction quantum dot solar cells

Influence of Reactant Concentration on Optical Properties of ZnO Nanoparticles

Microfluidic multi-target sorting by magnetic repulsion

Bowing character in wurtzite ZnO-based ternary alloys

qinghua Gui | Engineering | Best Researcher Award

qinghua Gui | Engineering | Best Researcher Award

Mr qinghua Gui, University of Science and Technology of China, China

Based on the provided details, it seems that Qinghua Gui is a suitable candidate for a “Best Researcher Award,” particularly within the field of engineering, specifically sodium-ion battery condition monitoring. However, the articles listed under Paola Imperatore do not align with Qinghua Gui’s research focus, as they are concentrated in sociopolitical and environmental mobilization topics.

Publication profile

Orcid

Education

A Doctor of Engineering (D.E.) is an advanced professional degree that focuses on applying engineering principles to real-world problems. This degree typically emphasizes research, innovation, and practical solutions in various fields such as civil, mechanical, electrical, and industrial engineering. D.E. graduates often lead in academia, industry, or government, contributing to technological advancements, infrastructure development, and cutting-edge engineering projects. The program combines rigorous coursework with applied research, equipping professionals with the skills to solve complex engineering challenges and drive progress in their respective fields. 🌍🔧💡

Towards an Ecological Transition from Below

This article explores worker mobilization within the automotive sector, analyzing how grassroots efforts contribute to ecological transitions. It provides insights into the intersection between labor and environmental activism, which is a timely and significant contribution to understanding social movements.

Le trasformazioni del movimento ambientalista in Italia

This study addresses the transformation of Italy’s environmental movement, particularly the balance between institutionalization and conflict. The focus is on the evolution of environmental activism, offering valuable historical and political context for the environmental discourse in Italy.

A Working-Class Environmentalism: The GKN Case Study

This article examines class-based environmentalism, particularly within the GKN case. It highlights the intersection of labor and environmental struggles, emphasizing the role of the working class in advocating for environmental justice. This is an important perspective in sociological and labor studies.

Territories and Protest: Mobilization Opportunities

In this paper, Imperatore explores the relationship between political opportunities and protest mobilization, focusing on cases such as the No TAP and No Grandi Navi movements. This study provides a theoretical framework for understanding how political and discursive factors influence environmental protests.

The Case of the Excavation in the Apuan Alps

This article discusses the environmental and social impact of excavation in the Apuan Alps. It focuses on environmental degradation and the local protests that have emerged in response. This case study underscores the complex interaction between industry, environment, and local activism.

Research focus

Qinghua Gui’s research focuses on energy materials, specifically in the field of sodium-ion batteries and solar energy systems. His work explores the behavior of cathode materials like NaNi₁/₃Fe₁/₃Mn₁/₃O₂ and Na₄Fe₃(PO₄)₂(P₂O₇) under thermal runaway conditions, contributing to battery safety and performance. Additionally, he has worked on improving solar energy efficiency through the design of compound parabolic concentrators to minimize light loss in vacuum tubes. His expertise spans energy storage, photo-thermal conversion, and renewable energy technology development. 🔋☀️⚡

Conclusion

While Paola Imperatore’s research is diverse and covers vital topics in environmental activism, labor studies, and political sociology, it does not match Qinghua Gui’s field of expertise in sodium-ion battery condition monitoring. For the “Best Researcher Award” within an engineering or technological research context, Qinghua Gui would be a stronger candidate. Conversely, Paola Imperatore would be an excellent candidate for awards focused on environmental sociology or labor activism research.

Publication top notes

Comparison of NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> and Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>(P<sub>2</sub>O<sub>7</sub>) cathode sodium-ion battery behavior under overcharging induced thermal runaway

 

 

Marina Guindi | Electrical Engineering | Best Researcher Award

Ms. Marina Guindi | Electrical Engineering | Best Researcher Award

Ms. Marina Guindi, American University of Kuwait, Kuwait

Based on the information provided, Ms. Marina Guindi appears to be a strong candidate for the Best Researcher Award due to her academic excellence, teaching experience, and involvement in research projects in electrical engineering. Below is an evaluation of her qualifications organized under relevant titles:

Publication profile

Academic Excellence 🎓

Marina Guindi has a solid educational background in electrical engineering, having completed her Bachelor of Engineering at the American University of Kuwait with high honors (Magna Cum Laude) and consistently placed on the Dean’s and President’s honor lists. Her academic journey continued with a Master of Science in Electrical Engineering from Kuwait University, graduating with distinction. These achievements demonstrate her commitment to academic excellence and intellectual growth.

Teaching Experience 🏫

Marina has accumulated significant teaching experience as a Teaching Assistant at Kuwait University and the American University of Kuwait. This experience, spanning multiple years and institutions, highlights her ability to convey complex concepts, engage students in the learning process, and contribute to academic environments. Her role as a teaching assistant also suggests strong communication and leadership skills, which are vital for a researcher.

Research Projects 🔍

Marina has demonstrated her research capabilities through her senior capstone project on “Motor Current Signature Analysis for Fault Detection in Induction Motors” and her master’s thesis focused on the “Optimal Location and Sizing of Renewable Distributed Generations and Electric Vehicle Charging Stations.” Both projects are highly relevant to contemporary challenges in electrical engineering, showcasing her ability to address complex technical problems and contribute innovative solutions.

Technical Skills 💻

Marina is proficient in various technical tools and programming languages, including MATLAB, Simulink, LabVIEW, PSpice, and Java. Her skills in using specialized software like Multisim, Ultiboard, and Quartus indicate her readiness to engage in advanced research and development projects. These competencies enhance her ability to carry out sophisticated analyses and simulations, which are essential for cutting-edge research.

Publication Top Notes  

Optimal Location and Sizing of Renewable Distributed Generations and Electric Vehicle Charging Stations

Signature Analysis as a Medium for Faults Detection in Induction Motors

Conclusion 🏆

Marina Guindi’s academic achievements, teaching experience, research projects, and technical skills make her a compelling candidate for the Best Researcher Award. Her background suggests a strong potential for future contributions to electrical engineering research, particularly in the areas of renewable energy integration and fault detection systems. Her commitment to education and research excellence aligns with the criteria typically sought for such prestigious recognition.