Assoc. Prof. Dr. Gang Li | Mechanical Engineering | Best Researcher Award
Associate professor, Northeast Electric Power University, China
Associate professor, Northeast Electric Power University, China
Assist. Prof. Dr BURAK AKIN, YTU, Turkey
Assist. Prof. Dr. Burak Akın is an academician at Yıldız Technical University, specializing in Electrical and Electronics Engineering. He holds a doctorate from Yıldız Technical University (2001-2008) and has extensive research in energy, renewable energy, and engineering technology. He has been an Assistant Professor since 2013, also holding roles such as Deputy Head of the Department and Commission Chair. Dr. Akın advises postgraduate and doctoral students, with research published in SCI journals. His academic contributions extend to organizing national and international scientific events and refereeing for journals. His expertise includes power systems, battery management, and optimization algorithms. ⚡📚🔋
Assist. Prof. Dr. Burak Akın is an accomplished expert in Electrical and Electronics Engineering with a Doctorate from Yıldız Technical University, Turkey. With over two decades of academic experience, he began his career as a research assistant and progressively advanced to his current role as an assistant professor. Dr. Akın is dedicated to research and education in his field, contributing significantly to advancements in Electrical and Electronics Engineering. Currently serving at Yıldız Technical University, he continues to inspire and mentor students while driving forward innovative research. 🔬📚💡🎓
Dr. Akın is a dedicated academic leader at Yıldız Technical University, actively engaged in shaping educational strategies and overseeing key academic initiatives. He holds leadership roles in various university committees, where he influences decision-making processes and contributes to the growth of the institution. Dr. Akın is also deeply involved in supervising multiple postgraduate theses, guiding students through their research journeys. His commitment to academic excellence and leadership is evident in his continuous efforts to enhance the university’s educational framework and support the next generation of scholars. 🎓📚💼👨🏫
Dr. Akın has significantly contributed to various legal proceedings by offering his expert knowledge in electrical engineering and technology. His insights have proven invaluable in legal contexts, showcasing his ability to bridge the gap between technical expertise and legal matters. With a strong background in engineering, Dr. Akın has applied his skills in areas like patent law, intellectual property, and technology-related disputes. His versatility in both technical and legal domains has enhanced his professional reputation, allowing him to be a trusted expert in his field. ⚖️🔌📚💡
B. Akın has contributed to various projects focused on power electronics and renewable energy systems. Key projects include the development of a safe onboard charging unit for electric vehicle batteries (TÜBİTAK, 2023) and a three-phase power factor correction circuit for charging stations (TÜBİTAK, 2022-2023). He also worked on a compact DC/DC converter (2020-2021), a smart turnstile system (TÜBİTAK, 2018-2019), and solutions for reducing the impact of energy-efficient lamps on the grid (2015-2017). Other notable projects include induction ovens (2011-2013) and power factor correction circuits (2005-2008), emphasizing renewable energy applications 🌍🔋⚡.
Assist. Prof. Dr. Burak Akın contributed to several important topics in physics in 2015. He authored chapters in the book Fen ve Mühendisler için Fizik (Physics for Science and Engineers), edited by D. Esra Yıldız, Erol Kurt, and H. Hilal Kurt, published by Nobel Yayın Dağıtım. His chapters include Kinetic Theory of Gases (pp. 1-17), Temperature, Heat, and Heat Transfer (pp. 1-17), and The First and Second Laws of Thermodynamics (pp. 1-17). These works have provided valuable insights into fundamental principles of physics for engineering and science students. ⚛️📚🌡️
Assist. Prof. Dr. Burak Akın’s research primarily focuses on optimization techniques for energy systems, particularly in photovoltaic (solar power) applications. His work includes innovative algorithms such as the grey wolf optimization and hybrid particle swarm algorithms for efficient energy management, battery charging, and maximum power point tracking (MPPT). Additionally, he explores feedback control systems and converter designs, aiming to improve energy storage systems and power conversion efficiency. His contributions support sustainable energy solutions, particularly in optimizing the performance of solar and battery systems. 🌞⚡🔋🧑💻
Assist. Prof. Dr. Mohammad Divandari, Islamic Azad University, Iran
Dr HARPREET AASI, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, India
Dr. Harpreet Aasi is a Postdoctoral Fellow in Thermal Engineering at IIT Bombay (2024–present). He holds a Ph.D. in Thermal Engineering from IIT Roorkee (2014–2020), an M.Tech. from NIT Raipur, and a B.E. in Mechanical Engineering. His expertise lies in heat transfer enhancement, particularly using ultrasound in electronic cooling systems, involving both numerical (ANSYS Fluent) and experimental methods. A recipient of multiple awards, including the Silver Medal at NIT Raipur, Dr. Aasi has contributed to prestigious projects sponsored by CSIR and DST. He is also an active reviewer for high-impact journals and has published extensively in heat exchanger optimization. 📚💡
Dr. Harpreet Aasi is a distinguished researcher specializing in thermal engineering. Currently, he is pursuing a Postdoctoral Fellowship at the Indian Institute of Technology Bombay (March 2024 – present). He earned his Ph.D. with honors in Thermal Engineering from IIT Roorkee (2014-2020) and completed an M.Tech. in Thermal Engineering with an impressive CPI of 8.96/10 at NIT Raipur (2011-2013). His academic journey began with a B.E. in Mechanical Engineering from New Government Engineering College Raipur, achieving a stellar CPI of 8.99/10 (2006-2010). Dr. Aasi’s dedication to academics is reflected in his strong foundations, scoring 76% in Intermediate (2005-2006) and 85% in Matriculation (2003-2004). 📚✨
Dr. Aasi conducted numerical (Ansys Fluent) and experimental studies (non-intrusive optical techniques) on single-phase and two-phase flow boiling processes for electronic cooling systems. This research explored the effect of ultrasound parameters, demonstrating its potential for enhancing heat transfer. Ph.D. Research: Investigations on Three-fluid Compact Plate-fin Heat Exchanger 🌡️📊 Dr. Aasi performed extensive experimental and numerical investigations (MATLAB coding) under transient and steady states, addressing flow maldistribution, inlet temperature non-uniformity, and ambient heat interaction. Innovative modeling optimized geometrical attributes for diverse plate-fin types. M.Sc. Research: Parametric Study of Orthotropic Annular Fin with Contact Resistance 🌀🛠️ Dr. Aasi developed a 2D dimensionless steady-state model to assess the thermal performance of orthotropic annular fins, focusing on polymer matrix composites with axis-dependent properties.
Dr. Harpreet Aasi has an impressive academic record, including a Silver Medal at the National Institute of Technology (NIT) Raipur in 2012-2013 🥈. He received the Academic Excellence Award at NIT Raipur in 2011-2012 🎓. Ranked 10th in the Chhattisgarh Swami Vivekanand Technical University state toppers list, he was 1st in New Government Engineering College Raipur in 2010 🏆. Dr. Aasi secured prestigious fellowships, including the Institute Postdoctoral Fellowship at IIT Bombay in 2024 🧑🔬 and MHRD scholarships for his Ph.D. (2014-2019) and M.Tech. (2011-2013) 📚. Additionally, he earned state-level merit scholarships during his B.E. studies (2007-2010) 🏅.
Dr. Harpreet Aasi has conducted groundbreaking research on optimizing the performance of three-fluid heat exchangers through both numerical and experimental investigations. Sponsored by CSIR, this research aims to improve heat transfer efficiency and system performance. Additionally, his study on the effect of temperature and flow nonuniformities on three-fluid compact heat exchangers, sponsored by DST, delves into understanding how such factors influence overall efficiency. These contributions are crucial in advancing thermal management systems, with potential applications in various industries, from energy to manufacturing. 🌡️🔧
Dr. Harpreet Aasi’s research primarily focuses on the thermo-hydraulic performance and optimization of multi-fluid heat exchangers, particularly three-fluid systems. His work investigates the effects of flow non-uniformity, ambient heat ingression, and temperature nonuniformity on the efficiency and dynamic behavior of cross-flow and plate-fin heat exchangers. Using advanced techniques like Artificial Neural Networks (ANN) and second law analysis, he aims to improve heat exchanger designs for enhanced thermal management in various engineering applications. His research is crucial for energy efficiency and thermal optimization in industries such as cryogenics, power generation, and heat recovery. 🔥🔧⚙️💡
Dr Benkun Tan, Hunan University of Arts and Sciences, China
Dr. Benkun Tan is a Ph.D. candidate at Changsha University of Science and Technology, specializing in Civil Engineering. His research focuses on steel-concrete composite structures, with significant contributions including studies on temperature field prediction and fatigue damage analysis. Notable publications include “Temperature Field Prediction of Steel-Concrete Composite Decks” and “Fatigue Crack Propagation in Stud Connectors.” Dr. Tan’s work is published in reputable journals such as Journal of Zhejiang University-SCIENCE A and Sustainability. His innovative approach enhances the understanding of structural integrity and performance. 🌉📚✨
Changsha University of Science and Technology, located in Changsha, China, has been the academic home of a Ph.D. candidate in the School of Civil Engineering since September 1, 2019. This institution is renowned for its comprehensive engineering programs, providing a robust curriculum that integrates theoretical knowledge with practical application. The focus on civil engineering equips students with the skills needed to tackle modern infrastructure challenges. Engaging with experienced faculty and participating in cutting-edge research, the candidate is poised to make significant contributions to the field. 📚🏗️🌍
Benkun Tan is an emerging researcher in the field of civil engineering, specifically focusing on steel-concrete composite structures. His research encompasses temperature field prediction, multiaxial fatigue damage analysis, and fatigue crack propagation in composite beams and connectors. Tan employs innovative methods, including ensemble algorithms and numerical simulations, to enhance the durability and performance of composite materials in construction. His contributions aim to optimize design and layout for temperature measurement in bridges, thereby improving structural integrity and safety. With a commitment to sustainability, Tan’s work is significant for advancing engineering practices in the built environment. 🔧🏗️📊
Dr. Tan’s research portfolio demonstrates consistent contributions to the fields of temperature modeling, fatigue analysis, and lifecycle assessment of steel-concrete composite structures, underscoring his suitability for the Best Researcher Award in civil engineering. His innovative methodologies and practical applications in composite structures align with the award’s focus on impactful and forward-thinking research in the field.
Associate Professor, Dr. N.G.P Institute of Technology, India.
Mr. Mehrdad ghamari, Edinburgh Napier University, Edinburgh, United Kingdom
Mr. Ghamari holds a Master’s degree in Structural Engineering from the University College of Engineering, University of Isfahan, where he excelled with a GPA of 17.76 out of 20. His academic journey began with a Bachelor’s degree in Civil Engineering from the University of Tehran. His commitment to ongoing education is evident through his roles as a visiting researcher at renowned universities in the UK and Portugal.
Mr. Ghamari has actively engaged in multiple innovative research projects, focusing on topics such as photovoltaic integration for passive cooling applications and the effects of lateral constraints on historical masonry walls. His work is supervised by respected professors in the field, showcasing his ability to collaborate effectively and contribute to meaningful research. Notable projects include analyzing the structural integrity of Persian historical masonry and investigating the impact of advanced materials like fiber-reinforced polymers on traditional structures.
Mr. Ghamari has lectured on a range of subjects, including structural analysis and mechanics of materials, at various institutions. His ability to convey complex concepts to students reflects his deep understanding of the subject matter and his commitment to academic excellence
Mr. Ghamari has accumulated substantial practical experience in civil engineering. He has designed and supervised numerous concrete and steel structures in Iran and holds a license for supervision and implementation within the Construction Engineering Organization of Iran. His practical insights complement his academic prowess, making him a well-rounded candidate.
Mr. Mehrdad Ghamari’s extensive educational background, innovative research contributions, teaching experience, and practical engineering skills make him a highly suitable candidate for the Best Researcher Award. His commitment to advancing sustainable engineering practices and his contributions to the field demonstrate his potential to influence future developments in civil engineering and structural analysis.
Assist. Prof. Dr. Mohammad Jafar Hemmati, Sirjan University of Technology, Iran
Dr. Mohammad Jafar Hemmati completed his Ph.D. in Electrical Engineering at Shahid Bahonar University of Kerman (2014-2019). His thesis focused on designing a low-voltage Colpitts quadrature oscillator using the gm-enhanced technique in CMOS technology. He also holds an M.Sc. in Electrical Engineering from Ferdowsi University of Mashhad (2008-2010) and a B.Sc. from Shahid Chamran University of Kerman (2003-2007). His academic background strongly supports his expertise in low-power and low-noise circuit design.
Dr. Hemmati is currently a lecturer at Sirjan University of Technology, where he teaches CMOS Integrated Circuits, Digital Logic Circuits, and more. His previous roles include being the head of the electrical department at Islamic Azad University, Firouzabad branch, and a design engineer at Kerman Tablo Electrical and Electronics Engineering Corporation. His broad teaching experience and industry involvement enrich his contributions to research and academia.
His research focuses on designing low-voltage and low-noise voltage-controlled oscillators (VCOs), injection-locked frequency dividers, low-noise amplifiers, and active mixers. These areas are critical for advancing modern communication and signal processing systems, reflecting his strong alignment with cutting-edge engineering challenges.
Prof. Dr. Kilhun Lee, University of Seoul, South Korea
Assistant Professor of Architecture at the University of Seoul, Kilhun Lee specializes in urban history and architecture history. She earned her Ph.D. and Master’s degree from the University of Tokyo. Before joining UOS in 2024, she held positions at Duksung Women’s University and the Institute of Seoul Studies. Her research focuses on urban regeneration and the conservation of industrial heritage, with numerous publications on architectural history, including comparisons of urban planning during Japanese colonial rule. Kilhun is a member of several professional associations, including the Architectural Institute of Korea and the Society of Architectural Historians of Japan. 📚🏙️
Kilhun Lee is currently an Assistant Professor at the University of Seoul, where she has developed a robust research profile in urban history and architecture. Her doctoral work at the University of Tokyo provided her with a strong foundation in architectural studies, which she has further enriched through various academic appointments. Her research is particularly relevant to the award’s criteria as it addresses themes of urban regeneration and the conservation of industrial heritage, highlighting her commitment to historical and contemporary issues in architecture.
Kilhun Lee’s work has been recognized through various awards and grants, including the Korea Research Foundation’s General Research Program. Her accolades, such as the Simwon Architectural Award for Academic Researchers, signify her impact in the field and her potential as a role model for women researchers in architecture and urban studies.
Professor Lee is involved in teaching undergraduate courses related to architectural history, contributing to the education of future generations in a male-dominated field. Her role as an educator aligns with the goals of the Research for Women Researcher Award, which seeks to promote women’s contributions to research and academia
Professor Kilhun Lee’s extensive background in architecture, her focus on significant urban issues, her notable publication record, and her commitment to education make her an exemplary candidate for the Research for Women Researcher Award. Her work embodies the values and objectives of the award, aiming to advance the recognition of women researchers and their contributions to the field.
Mr Ayalew Mekuria, Dilla University, Ethiopia
Mr. Ayalew Mekuria appears to be a suitable candidate for the Research for Excellence in Research program. Here’s an assessment of his profile:
Mr. Mekuria’s educational background in chemical engineering, particularly in process and food engineering, lays a strong foundation for his research capabilities. His master’s degree equips him with advanced knowledge and skills necessary for conducting high-quality research.
Mr. Mekuria’s various certifications, including:
These certifications highlight his commitment to continuous learning and development, essential traits for a researcher.
Mr. Ayalew Mekuria’s educational background, extensive work experience, practical internships, and commitment to continuous professional development position him as a strong candidate for the Research for Excellence in Research program. His ability to integrate theoretical knowledge with practical applications, alongside his active participation in research and community service, underscores his potential to contribute significantly to the research community.