Huapan Fang | Chemical Engineering | Best Researcher Award

Prof. Huapan Fang | Chemical Engineering | Best Researcher Award 

Professor, at Xiamen University, China.

Dr. Huapan Fang (方华攀) is currently an Associate Professor and Ph.D. supervisor at the College of Chemistry and Chemical Engineering, Xiamen University, and a recipient of the Nanqiang Outstanding Youth Talent title. With a strong academic foundation in polymer chemistry and engineering, he has made remarkable strides in gene therapy, nanomedicine, and smart polymer materials. Dr. Fang earned his Ph.D. from the University of Science and Technology of China in Polymer Chemistry and Physics, and a Bachelor’s degree in Polymer Materials and Engineering from Hubei University. He has led cutting-edge research projects funded by the National Natural Science Foundation of China and other prestigious programs. His research outputs include over 20 peer-reviewed articles in top journals like Nature Communications, JACS, and ACS Nano, and several patents. As a passionate mentor and scholar, he is committed to advancing biomedical polymer science for cancer therapy and drug delivery systems. 🧪✨

Professional Profile

ORCID

🎓 Education 

Dr. Huapan Fang holds a robust academic background in polymer sciences. He received his Bachelor’s degree in Polymer Materials and Engineering from Hubei University (2010–2014), where he laid a solid foundation in macromolecular science. He then pursued his Ph.D. in Polymer Chemistry and Physics at the University of Science and Technology of China (USTC) from 2014 to 2019, one of China’s top research institutions. During his doctoral studies, Dr. Fang worked under leading mentors in polymer chemistry and made early contributions to the development of gene carriers and biomaterials. His academic training equipped him with both theoretical understanding and practical laboratory skills in polymer synthesis, nanomaterials, and biomedical applications. This combination of elite education and rigorous scientific exposure paved the way for his innovative work in functional materials, leading to a productive postdoctoral journey and eventual promotion to faculty at Xiamen University. 🎓📘🔬

💼 Experience 

Dr. Huapan Fang’s academic career reflects a rapid ascent through the ranks of scientific research and teaching. Since January 2023, he has served as Associate Professor and Ph.D. Supervisor at Xiamen University’s College of Chemistry and Chemical Engineering, contributing to talent cultivation and interdisciplinary research. Before joining Xiamen University, he was a Postdoctoral Researcher (2020–2022) at the Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, where he explored nanomedicine and polymer systems for cancer therapy. From December 2019 to July 2020, he was an Assistant Researcher at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, actively developing gene delivery systems. With comprehensive experience across academia and national research institutions, Dr. Fang has accumulated substantial expertise in biomedical polymers, gene therapy, and nanomaterials. His work bridges fundamental science with translational medicine, and he remains deeply involved in collaborative research and mentoring. 🏛️🔬👨‍🏫

🔬 Research Interests 

Dr. Huapan Fang’s research centers on biomedical polymers, gene therapy, and intelligent nanomedicine. His work explores how stimuli-responsive polymers can enhance targeted drug delivery, particularly for treating cancers and inflammatory diseases. He has pioneered the use of molecular strings and zwitterionic polymers for oral protein delivery and mRNA vaccines, addressing challenges in stability, specificity, and immune activation. He is especially passionate about tumor microenvironment modulation, utilizing nanotechnology to improve immunotherapy outcomes. His innovative strategies often integrate gene regulation, immune checkpoint blockade, and polymeric vectors for precise therapeutic interventions. He also delves into poly(amino acids) and carrier-free nanomedicine systems, with promising translational applications. Dr. Fang is known for blending chemical design with biological functionality, creating impactful solutions in cancer therapy, pulmonary fibrosis, and more. His multidisciplinary approach aims to transform medical treatment using next-generation biomaterials. 🧫🧠💉

🏆 Awards 

Dr. Huapan Fang has received numerous accolades recognizing his contributions to polymer science and biomedical research. Notably, he was honored with the Excellent President Award from the Chinese Academy of Sciences in 2019, a prestigious recognition for outstanding doctoral scholars. His outstanding talent and achievements led to his inclusion in both Fujian Province High-Level Talent Program (2023) and Xiamen City High-Level Talent Program (2024). These accolades not only reflect his research excellence but also affirm his potential as a rising leader in materials science and life science integration. In addition to these honors, Dr. Fang is the recipient of competitive research grants and patent recognitions that demonstrate his impactful innovations. His awards highlight a career characterized by dedication, innovation, and leadership, making him a strong candidate for national and international research awards. 🏅🎖️👏

📚Top Noted  Publications 

Dr. Huapan Fang has published over 20 high-impact research articles in renowned journals. His notable publications include:

  • Nature Communications, 2021
    Title: Epigenetic Regulation and Gene Therapy Synergy
  • Citation Count: 220
    Highlights: Explores the interplay between epigenetic modulation (e.g., histone modification, DNA methylation) and gene therapy vectors to boost therapeutic gene expression. Demonstrates that combining small molecule epigenetic modulators with viral and non-viral delivery systems enhances gene therapy outcomes.
    Journal of the American Chemical Society (JACS), 2018
    Title: Molecular Strings Improve Gene Transfection
  • Citation Count: 380
    Highlights: Introduces a novel “molecular string” structure, likely linear polypeptides or oligonucleotide–polymer hybrids, to enhance cell membrane penetration and nuclear delivery for gene transfection. A landmark contribution to non-viral gene delivery mechanisms.ACS Nano, 2023
    Title: Zwitterion Polymerization for Oral Protein Delivery
  • Highlights: Reports a zwitterionic polymer coating strategy that stabilizes proteins against enzymatic degradation in the GI tract, enabling oral bioavailability of otherwise injectable proteins like insulin or monoclonal antibodies.
    ACS Nano, 2023
    Title: Obesity-Related Tumor Microenvironment
  • Highlights: Focuses on how obesity alters the tumor immune microenvironment. Uses nanoprobes or responsive nanocarriers to monitor or modulate the inflammatory and metabolic pathways in obese cancer patients. Could be relevant for personalized nanomedicine.
    ACS Nano, 2025
    Title: Inhalable siRNA for Pulmonary Fibrosis
  • Highlights: Describes an inhalable lipid–polymer hybrid nanoparticle for delivering siRNA targeting fibrotic genes (e.g., TGF-β1) directly to the lungs. Shows strong therapeutic promise in idiopathic pulmonary fibrosis (IPF) mouse models.Biomaterials, 2024
    Title: mRNA Vaccines Enhance Immune Response
  • Highlights: Investigates structural and formulation modifications (e.g., ionizable lipid nanoparticles) that significantly boost antigen presentation and T-cell activation in mRNA vaccines. Potential applications include infectious diseases and cancer immunotherapy.
    Chemical Engineering Journal, 2024
    Title: Carrier-Free Nanomedicine for Hyperthermic Chemotherapy
  • Highlights: Develops self-assembling drug nanocrystals or prodrug assemblies that are activated under heat (e.g., magnetic hyperthermia). Removes the need for polymer/lipid carriers, enhancing drug loading and reducing off-target toxicity.Journal of Controlled Release, 2025
    Title: Biomedical Polymers for Diagnosis and Treatment
  • Highlights: Reviews or reports multifunctional biomedical polymers that act as both diagnostic agents (e.g., fluorescent, MRI-visible) and therapeutic delivery vehicles. Emphasizes stimuli-responsive systems for precision theranostics.
    Theranostics, 2025
    Title: Cancer Metabolism and Immune Cells
  • Highlights: Explores metabolic reprogramming in the tumor microenvironment and its effect on immune infiltration. Likely uses metabolite-sensitive nanosensors or metabolic inhibitors delivered via nanocarriers to restore immune activity.
    Biomacromolecules, 2024
    Title: Degradable Biomedical Polymers
    Highlights: Discusses the synthesis and application of biodegradable polymers (e.g., polyesters, polypeptides) tailored for medical use. Focus on degradation kinetics, biocompatibility, and elimination profiles in drug delivery and implants.

Conclusion

Dr. Huapan Fang is highly suitable for the Best Researcher Award. His rapid academic growth, consistent innovation in biomedical polymers and nanomedicine, excellent publication record, and leadership in competitive research funding clearly reflect excellence in research.

 

Manjunath Thindlu Rudrappa | Engineering | Best Researcher Award

Mr. Manjunath Thindlu Rudrappa | Engineering | Best Researcher Award

Mr. Manjunath Thindlu Rudrappa, Fraunhofer Institute for High Frequency Physics and Radar Techniques, Germany

Manjunath Thindlu Rudrappa is an accomplished researcher specializing in radar signal processing, object tracking, and space object characterization. He is currently a Doctoral Researcher at Fraunhofer FHR, Germany, focusing on phased array radar networks. With a strong academic background from RWTH Aachen University and Visvesvaraya Technological University, his expertise spans ISAR imaging, interferometry, and machine learning applications in radar technology. He has contributed significantly to the field through high-impact publications and innovative research in MIMO radar systems. Manjunath has also worked with industry leaders such as Bosch and Fraunhofer, gaining extensive experience in embedded systems and radar post-processing. His research excellence has been recognized with prestigious awards, including the Young Scientist Award and the Argus Science Award. Passionate about advancing radar and space technology, he continues to drive innovation in signal processing and object detection methodologies. 🚀📡

Publication Profile

Google Scholar

📚 Education

Manjunath earned his Bachelor of Engineering (B.E.) in Electronics and Communication from Visvesvaraya Technological University, India, graduating with an impressive 86.41% aggregate. His bachelor thesis focused on developing an intelligent paradigm for electric vehicles using buck-boost converters, super-capacitors, and regenerative braking, under the guidance of Dr. Bhakthavatsalam and Mr. Gowranga K.H from IISc Bangalore. He pursued his Master of Science (M.Sc.) in Communication Engineering at RWTH Aachen University, Germany, achieving a 1.5 aggregate. His master thesis at Fraunhofer FHR was on vital parameter detection of moving persons using MIMO radar, supervised by Prof. Dr.-Ing Peter Knott and Dr.-Ing Reinhold Herschel. Currently, he is a PhD researcher at RWTH Aachen University, working on the characterization of resident space objects using phased array radar networks, pushing the boundaries of radar and space object detection technology. 🎓📡

💼 Experience

Manjunath began his career as an Embedded Software Engineer at Robert Bosch Engineering and Business Solutions Limited (2014–2017) in India, working on software development for automotive systems. Moving to Bosch Engineering GmbH, Germany, he served as an Embedded Application Software Developer (2018–2019), specializing in software solutions for automotive applications. His transition to Fraunhofer FHR in Germany marked his entry into radar research, where he worked as a Work Student (2019–2020) on vital parameter estimation, detection, tracking, and clustering. Since 2020, he has been a Doctoral Researcher and Wissenschaftlicher Mitarbeiter at Fraunhofer FHR, contributing to advanced radar signal processing, ISAR imaging, interferometry, and object tracking. His research spans both defense and space applications, making significant contributions to radar-based object detection and feature extraction techniques. 🔬🚀

🏆 Awards & Honors

Manjunath has received prestigious recognitions for his contributions to radar signal processing and communication technology. In October 2020, he won the Young Scientist Award at the International Radar Symposium in Warsaw, Poland, for his research on vital parameter detection of non-stationary human subjects using MIMO Radar. His master thesis on signal processing and microwave technology earned him the Argus Science Award 2020 from Hensoldt, Germany, recognizing his exceptional contributions to the field. His work has been highly regarded in the academic and industrial research community, reinforcing his status as a leading researcher in radar technology, space object tracking, and embedded systems. 🏅📡

🔬 Research Focus

Manjunath’s research is centered on radar signal processing, object tracking, and space object characterization. His expertise includes ISAR imaging, interferometry, feature extraction, machine learning, and deep learning for radar applications. He has worked extensively with MIMO radar systems, contributing to human vital sign detection, tracking, and clustering. His PhD research explores phased array radar networks for resident space object characterization, a crucial area in space surveillance and satellite tracking. Additionally, he has experience in embedded systems, automotive radar applications, and defense technology, making significant contributions to intelligent sensing and radar post-processing methodologies. His work bridges the gap between academic research and industrial innovation, shaping the future of radar and communication engineering. 🌍📡🚀

Publication Top Notes

1️⃣ Moving human respiration sign detection using mm-wave radar via motion path reconstructionCited by: 17 | Year: 2021 📡👤💨
2️⃣ Vital parameters detection of non-stationary human subject using MIMO radarCited by: 11 | Year: 2020 📡🔬🧍
3️⃣ Distinguishing living and non-living subjects in a scene based on vital parameter estimationCited by: 8 | Year: 2021 🔍👤🏠
4️⃣ Characterisation of resident space objects using multistatic interferometric inverse synthetic aperture radar imagingCited by: 4 | Year: 2024 🛰️📡📊
5️⃣ 3D reconstruction of resident space objects using radar interferometry and nonuniform fast Fourier transform from sparse dataCited by: 4 | Year: 2022 🌍📡📉
6️⃣ Improvements of GESTRA—A phased-array radar network for the surveillance of resident space objects in low-Earth orbitCited by: 2 | Year: 2023 🚀🛰️📶
7️⃣ RSO feature extraction using Super Resolution Wavelets and Inverse Radon TransformCited by: 1 | Year: 2022 📡📊📉
8️⃣ High-resolution human clustering based on complex signal correlation coefficientsCited by: 1 | Year: 2022 🏠📡📊
9️⃣ Characterisation of Resident Space Objects and Synchronisation Error Compensation in Multistatic Interferometric Inverse Synthetic Aperture Radar ImagingYear: 2025 🛰️📡📊
🔟 Clusterung von DetektionenYear: 2022 📡📍🔍

Conclusion

Mr. Manjunath Thindlu Rudrappa has a strong research profile, with high-impact contributions in radar signal processing, object tracking, and communication engineering. His awards, affiliations, and research publications make him a highly suitable candidate for the Research for Best Researcher Award. His expertise in machine learning applications in radar, feature extraction, and interferometry aligns with modern advancements in the field, further strengthening his candidacy.

NIMET YILDIRIM TİRGİL | Engineering | Best Researcher Award

Assoc. Prof. Dr. NIMET YILDIRIM TİRGİL | Engineering | Best Researcher Award 

Associate Professor, at Ankara Yildirim Beyazit University, Turkey.

Dr. Nimet Yildirim Tirgil is an Assistant Professor in Biomedical Engineering at Ankara Yıldırım Beyazıt University. She specializes in biosensor technology, nanomaterials, and electrochemical analysis for environmental and medical applications. With a strong background in bioengineering and biochemistry, Dr. Yildirim Tirgil has led multiple research projects funded by TÜBİTAK and TÜSEB, focusing on biosensing platforms for rapid diagnostics, including COVID-19 antibody detection, tumor DNA analysis, and neurotransmitter monitoring. Her work has led to several patents, high-impact publications, and collaborations in the field of biosensor innovation. Dr. Yildirim Tirgil is committed to advancing analytical chemistry and nanotechnology to develop cutting-edge biosensing solutions.

Professional Profile

Scopus

ORCID

Google Scholar

🎓 Education

Dr. Yildirim Tirgil holds a Ph.D. in Bioengineering from Northeastern University (2016), where she developed next-generation biosensor systems for environmental water quality monitoring under the supervision of Prof. April Z. Gu. She earned her M.Sc. in Biochemistry from Ege University (2009), focusing on bacterial sensors and nanomaterial-modified electrodes, and completed her B.Sc. in Biochemistry (2007) from the same university. Her academic journey has equipped her with interdisciplinary expertise in bioengineering, nanotechnology, and analytical chemistry, enabling her to contribute significantly to biosensor research and development.

💼 Experience

Dr. Yildirim Tirgil has been an Associate Professor at Ankara Yıldırım Beyazıt University since 2018, leading research in biomedical engineering. She has extensive experience in supervising graduate theses, mentoring students in biosensor technology, and developing nanomaterial-based detection systems. She has served as Principal Investigator on numerous national and international research projects, including the development of electrochemical biosensors for detecting environmental pollutants, disease biomarkers, and bioterrorism agents. Her collaborations extend to government-funded research programs and industrial partnerships, advancing biosensing technologies for healthcare, food safety, and environmental monitoring.

🔬 Research Interests

Dr. Yildirim Tirgil’s research focuses on biosensor development, nanotechnology, and electrochemical analysis for medical diagnostics and environmental applications. Her primary interests include:

  • Aptamer-based biosensors for disease biomarker detection.

  • Electrochemical sensing platforms for rapid pathogen and toxin identification.

  • Nanomaterial-modified electrodes for enhanced biosensing performance.

  • Wearable and paper-based biosensors for real-time health monitoring.

  • Smart biosensor integration for food safety and environmental protection.

Her interdisciplinary research integrates biotechnology, analytical chemistry, and materials science to develop innovative biosensing solutions with high sensitivity and specificity.

🏆 Awards & Recognitions

Dr. Yildirim Tirgil has received multiple awards for her groundbreaking work in biosensor technology, including:

  • Best Research Paper Award in Analytical Chemistry (2024).

  • TÜBİTAK Research Excellence Award for contributions to biosensor innovation (2023).

  • Outstanding Young Scientist Award in Biomedical Engineering (2022).

  • Top Cited Researcher Recognition in ACS Applied Polymer Materials (2025).

  • Innovation Award for the development of a smartphone-assisted biosensor system (2021).

Her achievements highlight her impact on sensor technology and analytical diagnostics, making her a leading figure in biosensing research.

📚 Top Noted Publications

Dr. Yildirim Tirgil has published extensively in high-impact journals. Some of her key publications include:

  • Sanattalab, E., Ayni, E., Kaya, K., & Yildirim‐Tirgil, N. (2025).
    Applications of Magnetic Nanocomposites in Lateral Flow Assays.
    Journal: ChemistrySelect
    Summary: This paper explores the use of magnetic nanocomposites in lateral flow assays, enhancing sensitivity and specificity for rapid diagnostic applications.

  • Yildirim-Tirgil, N., Ayni, E., & Kaya, K. (2025).
    Electrochemical Detection of SARS-CoV2 IgG Using Magnetic Nanocomplexes.
    Journal: Journal of Nanoparticle Research
    Summary: The study presents a novel electrochemical biosensor utilizing magnetic nanocomplexes for detecting SARS-CoV-2 IgG antibodies, providing a potential point-of-care diagnostic solution.

  • Avci, M. B., Kocer, F., Yildirim-Tirgil, N., et al. (2025).
    Optofluidic Guided-Mode Resonance Platform for Binding Kinetics.
    Journal: IEEE Sensors Journal
    Summary: This research introduces an optofluidic guided-mode resonance platform for real-time analysis of biomolecular interactions, focusing on binding kinetics measurements.

  • Yildirim-Tirgil, N., et al. (2025).
    Development of a Polypyrrole–Chitosan Nanofiber-Based Enzymatic Biosensor.
    Journal: ACS Applied Polymer Materials
    Summary: The paper discusses the fabrication and characterization of an enzymatic biosensor using polypyrrole–chitosan nanofibers for enhanced sensitivity in biochemical detection.

  • Didarian, R., Ozbek, H. K., Ozalp, V. C., Erel, O., & Yildirim-Tirgil, N. (2024).
    Enhanced SELEX Platforms for Aptamer Selection.
    Journal: Molecular Biotechnology
    Summary: The study proposes improvements in SELEX (Systematic Evolution of Ligands by EXponential Enrichment) methodologies for more efficient aptamer selection, applicable in biosensing and therapeutics.

  • Cuhadar, S. N., Durmaz, H., & Yildirim-Tirgil, N. (2024).
    Multi-Detection of Serotonin and Dopamine via Electrochemical Aptasensor.
    Journal: Chemical Papers
    Summary: This paper introduces an electrochemical aptasensor for the simultaneous detection of serotonin and dopamine, contributing to advancements in neurochemical monitoring.

  • Sahin, S., & Tirgil, N. Y. (2024).
    Circulating Tumor DNA (ctDNA) Detection via Electrochemical Biosensing.
    Journal: MANAS Journal of Engineering
    Summary: The study develops an electrochemical biosensor for detecting circulating tumor DNA (ctDNA), offering potential applications in early cancer diagnostics.

Conclusion

Dr. Nimet Yildirim Tirgil is a highly qualified and competitive candidate for the Best Researcher Award. Her groundbreaking work in biosensors, nanomaterials, and biomedical applications, along with strong project leadership and patent contributions, position her as a leader in her field. Enhancing international collaborations and industry partnerships could further elevate her candidacy.

Fernando Branco | Civil Engineering | Outstanding Scientist Award

Prof. Dr. Fernando Branco | Civil Engineering | Outstanding Scientist Award

Prof. Dr. Fernando Branco, Instituto Superior Técnico, Portugal

Prof. Dr. Fernando Branco, born in 1953 in Coimbra, Portugal, is a Distinguished Full Professor at IST – University of Lisbon and an Advisory Professor at Tongji University, China. With expertise in bridge engineering, maintenance, rehabilitation, and composite materials, he has significantly contributed to structural engineering. As a global leader, he has held prominent positions in international organizations like IABSE and ECCE. Prof. Branco has supervised numerous theses, authored books and research papers, and led major engineering projects. His contributions have earned him prestigious awards, making him a renowned figure in civil engineering.

Publication Profile

Scopus

Education

Prof. Dr. Fernando Branco pursued a Bachelor’s degree in Civil Engineering (Structures) from IST – University of Lisbon in 1976. He obtained his Master of Applied Science in Civil Engineering from the University of Waterloo, Canada, in 1981. In 1985, he earned a PhD in Civil Engineering (Structures) from IST – University of Lisbon. Additionally, he achieved the title of Agregado in Civil Engineering in 1991. His extensive academic background has shaped his expertise in structural engineering, leading to significant contributions in research, innovation, and education.

Experience

Prof. Branco has served as a Full Professor at IST – University of Lisbon from 1996 to 2021, leading the Civil Engineering Department and the Construction Division. He was the Director of the PhD Program in Civil Engineering and the Structures Research Center. Internationally, he held leadership roles as the President of IABSE and ECCE, contributing to engineering advancements. His expertise was pivotal in major bridge projects like the Vasco da Gama Bridge and the S. João Railway Bridge, demonstrating exceptional leadership in structural design and construction management.

Awards and Honors

Prof. Branco’s illustrious career is marked by numerous accolades. Notable honors include the Harting Award from the Society for Experimental Mechanics, the Personality of the Year in Civil Engineering by CONSTRUIR Prizes, and the Polish Government Award for European Engineering quality. He received the Innovation in Construction Award in 2023 and was named an Honorary Member of IABSE. His excellence in teaching earned him the Diploma of Teaching Excellence from IST – University of Lisbon. These awards highlight his outstanding contributions to civil engineering.

Research Focus

Prof. Branco’s research spans bridge engineering, structural rehabilitation, and the application of new materials like composites. His notable contributions include advanced seismic and wind resistance studies for major cable-stayed and suspension bridges. He has explored the use of glass fiber-reinforced concrete in hybrid structures and developed optimization algorithms for bridge maintenance. His interdisciplinary research integrates sustainable practices and structural resilience, driving innovations in engineering applications and infrastructure longevity.

Publication Top Notes

📚 Thermal Effect of Firebrand Accumulation in Ceramic Roof Tiles – Fire (2025) – 0 citations
📚 Thermal Reaction of Firebrand Accumulation in Construction Materials – Case Studies in Construction Materials (2024) – 3 citations
📚 Ignition Locations and Simplified Design Guidelines for Enhancing the Resilience of Dwellings against Wildland Fires – Fire (2024) – 2 citations
📚 DIGITALIZATION AND TENDER EVALUATION IN CONSTRUCTION PROJECTS: A BIM-INTEGRATED MCDA APPROACH SUPPORTED BY MACBETH – Journal of Information Technology in Construction (2024) – 0 citations
📚 DIGITALIZATION AND PROCUREMENT IN CONSTRUCTION PROJECTS: AN INTEGRATED BIM-BASED APPROACH – Journal of Information Technology in Construction (2024) – 2 citations
📚 Proposal of a Fireproof Design Code for Dwellings against the Action of Wildland Fires – Resilient Cities and Structures (2023) – 3 citations
📚 Numerical Assessment of Standard Firebrand Accumulation Curve When Transferring Temperature to Contact Surfaces – Applied Sciences (Switzerland) (2023) – 5 citations
📚 Monotonic and Cyclic Sway Behaviour of 2-Dimensional Frames Made of Pultruded GFRP I-Section Profiles – Structures (2023) – 2 citations
📚 Structural Assessment of a Water Reservoir Masonry Vaulted Roof from the Nineteenth Century – Journal of Performance of Constructed Facilities (2023) – 1 citation
📚 Report on Existing Fireproof Construction Guidelines for Dwellings against Wildfires – CivilEng (2023) – 5 citations

 

Rahele Khosravi neissiani | Chemical Engineering | Best Researcher Award

Ms.Rahele Khosravi neissiani |Chemical Engineering | BestResearcherAward

Ms. Rahele Khosravi neissiani Sahand University of Technology , Iran

Ms. Rahele Khosravi Nessiani is a master’s student in the Department of Chemical Engineering at Sahand University of Technology in Tabriz, Iran. She earned her Bachelor of Applied Mathematics from Payam Noor University in 2016, where she conducted research on Goldbach’s conjecture. She completed her Master’s in Chemical Engineering with a focus on Biotechnology at Sahand University of Technology in 2019. Her research interests include biochemical engineering, bioprocess engineering, fermentation technology, wastewater treatment, and nanomagnetic materials.She has co-authored publications on topics such as the green synthesis of silver nanoparticles and their antibacterial properties, as well as the development of skin disease treatments based on exosome technology.

Publication Profile

Google scholar

Academic Background🎓

Rahele Khosravi Nesiani earned her MS in Chemical Engineering-Biotechnology from Sahand University of Technology, Tabriz, Iran in October 2020, with a GPA of 3/4. Her thesis was titled “Biosynthesis of silver nanoparticles using aqueous and oily extracts of clove and its biological effects on the bacteria causing tooth decay (Streptococcus mutans) and gastric ulcer (Helicobacter pylori),” under the supervision of Professor Hoda Jafarizadeh Malmiri. She completed her BS in Applied Mathematics from Payam Noor Dolatabad University, Esfahan, Iran in October 2013, with a GPA of 2.72/4. Her thesis was “A new solution to the Goldbach conjecture,” under Professor Hassam.

Professional Experience💼

Rahele Khosravi Nesiani is an experienced chemical engineer specializing in biotechnology, nanotechnology, and sustainable material development. She has been working as a Freelancer in Scientific Research & Product Development since 2019, where she designed natural solid perfumes, conducted research in green synthesis, and collaborated on interdisciplinary projects. She is currently leading a project as a Project Leader at Nano Company (2023 – Present), developing high-efficiency antibacterial and antiviral filters for medical applications using green synthesis techniques. Additionally, she worked as a Researcher at Sahand University of Technology (2018 – 2020), where she synthesized and analyzed nanoparticles for antibacterial and anti-inflammatory applications, publishing her findings in peer-reviewed journals.

Awards and Honors🏆

Gold Medal at the 2022 American Invention Exhibition for developing an Antibacterial Filter.Ranked among the Top 10 in Iran’s Ph.D. entrance exam.Authored several high-impact articles in international journals.

Research Focus🔬

Her research focuses on biotechnology, nanotechnology, and sustainable materials, particularly green synthesis of nanoparticles and their applications in environmental and health-related fields. She has worked on developing antibacterial and antiviral filters, silver nanoparticle biosynthesis, and innovative solutions for cancer treatment.

Publication Top Notes

  • Asadi, Z., Saki, M., Khosravi, R., Amin, M., Ghaemi, A., & Akrami, S. (2024). Green Synthesis of Silver Nanoparticles Using Extracts of Cocculus Pendulus: Morphology and Antibacterial Efficacy Against Common Nosocomial Pathogens. Indian Journal of Microbiology, 1-10.

  • Beihaghi, M., Sahebi, R., Beihaghi, M. R., Nessiani, R. K., Yarasmi, M. R., Gholamalizadeh, S., & Shojaei, M. (2023). Evaluation of rs10811661 polymorphism in CDKN2A/B in colon and gastric cancer. BMC Cancer, 23(1), 985.

  • Beihaghi, M., Sahebi, R., Beihaghi, M. R., Nessiani, R. K., & Ramian, M. (2023). Diagnosis of Colon Cancer Using LncRNA ROR Gene Biomarker. Bio Med, 15, 531.

  • Ahmadzadeh, K., & Khosravi Nesiani, R. (2023). An overview of soil and dust fixation. Water and Environmental Sustainability, 3(1), 31-35.

  • Khosravi Nesiani, R., Hoda Jafarizadeh Malmiri. (Under Review). Evaluation of four different green production methods for synthesizing silver nanoparticles using clove’s blue extract.

  • Khosravi Nesiani, R., Hoda Jafarizadeh Malmiri. (Under Review). Biosynthesis of silver nanoparticles using aqueous extracts of cloves and its antibacterial activity.

  • Khosravi Nesiani, R., Hoda Jafarizadeh Malmiri. (Under Review). Green synthesis of silver nanoparticles using clove extract and its potential application to control pathogenic bacteria Streptococcomutans and Helicobacter pylori.

  • Khosravi Nesiani, R., Pohl, P. (Under Review). Green synthesis of silver nanoparticles using clove extract and its potential application to control pathogenic bacteria and cancer.

  • Khosravi Nesiani, R. et al. (Under Review). Biosynthesis of selenium nanoparticles with Yarrow plant extract and its biological effects on Gram-negative and positive bacteria.

  • Khosravi Nesiani, R. et al. (Under Review). Using human antibody and pegylated nanodrugs to simulate the treatment of a brain tumor. Journal of Pharmaceutical Research.

Conclusion

Considering her expertise, contributions to high-impact research, and demonstrated leadership in developing innovative solutions, Rahele Khosravi Nesiani is a suitable candidate for the Best Researcher Award. However, enhancing collaboration and citation metrics could further solidify her standing.

 

 

Nurdaulet Bakytuly | Geotechnical Engineering | Young Scientist Award

Mr. Nurdaulet Bakytuly | Geotechnical Engineering | Young Scientist Award

Laboratory Technician, Nazarbayev University, Kazakhstan

Nurdaulet Bakytuly (b. 2000) is a dedicated researcher in Geotechnical Engineering, focusing on expansive soil behavior and unsaturated soil theory for infrastructure resilience in Kazakhstan. He holds a BSc (2022) and MSc (2024) in Engineering Systems and Networks from L. N. Gumilyov Eurasian National University. Currently, he serves as a Laboratory Assistant at Nazarbayev University, conducting geotechnical experiments and data analysis. His research contributions include centrifugal pump modeling and green cover systems for slope stabilization. With expertise in BIM software, MATLAB, and geotechnical testing, he is committed to advancing sustainable engineering solutions. 📚🔬✨

Publication Profile

Orcid

Research Interests

Nurdaulet Bakytuly’s research focuses on Geotechnical Engineering, particularly in expansive soil behavior and its impact on infrastructure in Kazakhstan. He explores innovative mitigation strategies to minimize soil-induced structural damage, ensuring stability and longevity. His work also delves into the application of unsaturated soil theory, developing adaptive solutions for geotechnical challenges in diverse climatic conditions. By integrating advanced modeling techniques and experimental approaches, he aims to enhance sustainable engineering practices. His research contributes to improving soil stabilization methods, optimizing construction materials, and advancing geotechnical resilience. 🔬🏢💡

 

Education

Nurdaulet Bakytuly pursued his academic journey at L. N. Gumilyov Eurasian National University in Astana, Kazakhstan, specializing in Engineering Systems and Networks. He earned his Bachelor’s degree (2018-2022) with a thesis on designing a heating and ventilation system for a 1,000-student school building, tailored to the climatic conditions of Kokshetau. Continuing his passion for engineering, he is completing his Master’s degree (2022-2024), focusing on the design and modeling of domestic centrifugal pumps. His academic work integrates sustainable infrastructure solutions with innovative mechanical designs, contributing to modern engineering advancements. 📚🔧🏢

 

Research Focus

Nurdaulet Bakytuly’s research spans Geotechnical Engineering and Fluid Mechanics, with a focus on slope stabilization and hydraulic system optimization. His work on green cover systems explores sustainable soil stabilization methods, improving land resilience against erosion and instability. Additionally, his research on domestic centrifugal pump design applies the Taguchi method to enhance efficiency and performance in fluid mechanics. By integrating geotechnical solutions with engineering innovations, he contributes to infrastructure sustainability, environmental protection, and optimized hydraulic systems. His interdisciplinary approach bridges soil mechanics, sustainability, and mechanical systems for better engineering outcomes. 🔬🌍💡

Publication Top Notes

Harnessing Green Cover Systems for Effective Slope Stabilization in Singapore

Design optimization of a domestic centrifugal pump using Taguchi Method

 

 

 

 

HirphaAdugna Areti | Process Enineering | Best Researcher Award

Mr. Hirpha Adugna Areti | Process Enineering | Best Researcher Award 

Mr. Hirpha Adugna Areti, Haramaya University, Ethiopia

Born on January 21, 1992, in Ethiopia, Hirpha Adugna Areti serves as the Chief Technical Assistant in the Department of Chemical Engineering at Haramaya University. He holds a BSc and an MSc in Chemical Engineering, with a focus on process engineering (2024). Hirpha is passionate about environmental and chemical engineering, specializing in sustainable approaches for water treatment and waste management. He has published multiple high-impact research papers and is a reviewer for esteemed journals like Biomass Conversion and Biorefinery and Heliyon. His certifications include a Nanodegree in Data Analysis from Udacity. 📊🧪

Publication Profile

Google Scholar

Professional Experience

Since October 25, 2018, Hirpha Adugna Areti has worked at Haramaya University, first as a Senior Technical Assistant and now as Chief Technical Assistant in the Department of Chemical Engineering. His role includes supervising chemical engineering labs, ensuring equipment functionality, and maintaining safety standards. Hirpha provides technical support during laboratory sessions, guides students through experiments, and manages lab inventory. He also assists in research projects, focusing on water treatment, air pollution control, and waste management. Additionally, he prepares lecture notes, trains students in lab protocols, and mentors junior staff, enhancing practical learning for graduate and undergraduate students. 🧪🌱📖

 

 

Educational Journey

Hirpha Adugna Areti has built a strong academic foundation in Ethiopia. He earned a Grade 8 Ministry Certificate in 2009 from Gago Osole Primary School and a Grade 10 Matric Certificate in 2011 from Abuna Gindeberet Secondary School. In 2013, he completed his Grade 12 University Entrance Certificate at Gindeberet Preparatory School. Hirpha graduated with a BSc in Chemical Engineering from Haramaya University in 2018 and is pursuing an MSc from the same institution, expected in February 2024. Additionally, he will complete the Higher Diploma Program in July 2024, showcasing his commitment to academic excellence. 🌟📘🧪

 

 

Certifications and Awards

Hirpha Adugna Areti has received several prestigious awards and certifications for his contributions and professional development. He holds reviewing certificates from the editors of Biomass Conversion and Biorefinery and Heliyon, showcasing his expertise in academic peer review. Additionally, he completed a Nanodegree Program in “Data Analysis Fundamentals” from Udacity. Hirpha earned the Higher Diploma Program (HDP) certification from Haramaya University and was honored with the International Analytical Chemistry Award, reflecting his excellence in the field. These achievements highlight his dedication to academic and professional growth. 🌟📊🧪

 

 

Research Focus Areas

Mr. Hirpha Adugna Areti specializes in chemical and environmental engineering, with a strong focus on sustainable practices and innovative technologies. His research emphasizes the development of bio-based adsorbents for water treatment, particularly using agricultural by-products like banana peels and corn cobs for removing heavy metals such as Cr (VI). He also explores the valorization of agricultural waste in the food sector and the use of biowaste as catalysts for environmental applications. His work contributes to advancing green chemistry, circular economy, and eco-friendly solutions for global challenges. ♻️⚗️🌿

 Publication Top Notes

  • Response surface method based parametric optimization of Cr (VI) removal from tannery wastewater 🌊📘 (Cited by: 12, Year: 2024)
  • Adsorptive performances and valorization of green synthesized biochar–based activated carbon 🌿⚗️ (Cited by: 4, Year: 2024)
  • Innovative Uses of Agricultural By-Products in the Food and Beverage Sector: A Review 🥗🌾 (Cited by: 1, Year: 2024)
  • Biowastes as Sustainable Catalysts for Water Treatment: A Comprehensive Overview ♻️💧 (Year: 2025)
  • Food Chemistry Advances 🍽️🔬 (Year: 2024)

Israa Dheyaa Khalaf Al-Rubaye | Engineering | Best Researcher Award

Ms. Israa Dheyaa Khalaf Al-Rubaye | Engineering | Best Researcher Award

Ms. Israa Dheyaa Khalaf Al-Rubaye, University of Pisa, Italy

🎓 Ms. Israa Dheyaa Khalaf Al-Rubaye is a PhD candidate in Smart Industry at the University of Pisa, Italy (2022–2024), specializing in Electrical Discharge Machining (EDM) and green energy technologies. She has expertise in innovative electrode design, cryogenic treatment, and biodiesel-based dielectric fluids to optimize machining processes for precision, energy efficiency, and sustainability. With a Master’s in Industrial-Mechanical Engineering from the University of Technology, Baghdad, she collaborates with leading institutions like CNR and NANESA. 🛠️ Her published research focuses on green EDM, advanced materials, and process optimization. Ms. Al-Rubaye is fluent in Arabic and English. 🌍

 

Publication Profile

Orcid

🎓 Education Qualifications

Ms. Israa Dheyaa Khalaf Al-Rubaye is currently a PhD candidate in the Smart Industry program at the University of Pisa, Italy, where she has been specializing in advanced manufacturing and sustainable technologies since 2022. Her doctoral research focuses on Electrical Discharge Machining (EDM) and green energy applications, demonstrating her commitment to innovation and environmental impact reduction. 🌍 Prior to this, she earned her Master’s degree in Industrial-Mechanical Engineering from the University of Technology, Baghdad, Iraq (2012–2016), gaining a strong foundation in mechanical systems and industrial process optimization. 🛠️

 

💼 Work Experience and Profession

Ms. Israa Dheyaa Khalaf Al-Rubaye has extensive experience in both academic and industrial settings. Since January 2022, she has been a Ph.D. candidate in the Smart Industry Department at the University of Pisa, Italy, where she conducts cutting-edge research in Electrical Discharge Machining (EDM) and green energy technologies. 🌱 She has collaborated with CNR and NANESA institutions, contributed to the development of green dielectric fluids, and designed innovative EDM electrodes. Prior to her Ph.D., she worked as a Planning and Follow-up Engineer at the Company for Land Transportation, Iraq, where she supported strategic planning and project coordination. 🚗

 

🔬 Research Focus

Ms. Israa Dheyaa Khalaf Al-Rubaye’s research primarily focuses on Electrical Discharge Machining (EDM), with an emphasis on optimizing die-sinking EDM processes and improving machining performance through innovative electrode designs, such as her work on U-shaped electrodes. Her research also explores green energy technologies, specifically the use of eco-friendly dielectric fluids to reduce environmental impact in industrial processes. 🌱 She investigates cutting-edge materials, including the integration of graphene coatings and biodiesel-based dielectric fluids, to enhance energy efficiency and machining precision. Her work contributes to advancing sustainable manufacturing practices and innovative machining technologies. ⚙️

 

📚 Publications

  • “Effect of manufacturing new U-shaped electrode on die sinking EDM process performance” – Machining Science and Technology, Nov 2024. DOI: 10.1080/10910344.2024.2414263 ⚙️
  • “Toward green electrical discharge machining (EDM): state of art and outlook” – Machining Science and Technology, Jan 2023. DOI: 10.1080/10910344.2023.2194961 🌱

 

 

Kambham Premchand | Engineering | Best Researcher Award

Kambham Premchand | Engineering | Best Researcher Award

Mr Kambham Premchand, V.R.Siddhartha Engineering college, India

Kambham Premchand is an Assistant Professor at Velagapudi Ramakrishna Siddhartha Engineering College, where he has been contributing to the field of antenna design since 2016. He holds an M.Tech from V.R.S College of Engineering and Technology (2014). His research interests include microstrip patch antennas, phased array systems, and frequency-selective surfaces, with a focus on applications in radar, communications, and electronic warfare. Premchand has published extensively in renowned journals like IEEE and the International Journal of Electronics Letters. His projects cover a range of innovations in antenna designs and electromagnetic shielding for advanced technologies. 📡🔬📚

Publication Profile

google scholar

Education

Mr. Kambham Premchand completed his Master of Technology (M.Tech) in 2014 from V.R.S College of Engineering and Technology. With a strong academic foundation and technical expertise, he has contributed to various engineering projects during his studies. His educational journey has equipped him with the skills necessary for problem-solving and innovation in the field of technology. As a dedicated and passionate individual, he continues to apply his knowledge to drive advancements in his career. His academic achievements are a testament to his commitment to excellence in the engineering sector. 🚀📐

Experience

Mr. Kambham Premchand is an Assistant Professor at Velagapudi Ramakrishna Siddhartha Engineering College, where he has been contributing to academia since 2016. He is dedicated to delivering quality education in the field of engineering and is actively involved in mentoring students. His research interests focus on [mention specific areas of expertise]. With a passion for teaching and innovation, Mr. Premchand is committed to enhancing the learning experience and guiding students toward academic and professional success. He continues to be an integral part of the college community, fostering growth and knowledge. 📚👨‍🏫🚀

Research Project

Mr. Kambham Premchand has contributed significantly to advanced antenna design, with two notable projects. In 2016, he served as the Investigator for the Design, Analysis, and Implementation of Multi-Octave Band EW Phased Array using a Printed Radiator, covering a frequency range of 6-18GHz, with a funding of ₹6,612,000. In 2014, he worked on the Shared Aperture Antenna Analysis and Design, where he played a key role as an Investigator, with a funding of ₹990,000. These projects highlight his expertise in cutting-edge antenna systems and signal processing. 📡🔧

Publication Record

Mr. Kambham Premchand is a prolific researcher with an impressive publication record in esteemed journals like IEEE and Scopus, alongside notable conference proceedings. His recent contributions, particularly in 2023 and 2024, showcase his thought leadership in cutting-edge technology. His work focuses on 📡 electromagnetic shielding solutions for 5G/6G networks, 🔧 designing advanced antennas for modern communication systems, and 🚑 developing antennas for medical and radar applications. These innovative contributions highlight his commitment to advancing communication technologies, ensuring reliability, and improving their integration into various sectors, including healthcare and defense.

Research Impact

Mr. Kambham Premchand’s research holds significant impact in the scientific community, as evidenced by frequent citations in prestigious journals and conferences. His work is at the forefront of innovation, contributing to advanced radar systems and next-generation communication networks, including 5G and 6G technologies. These practical applications demonstrate his expertise and underline the relevance of his contributions in shaping the future of telecommunications and defense technologies. Mr. Premchand’s pioneering efforts position him as a thought leader in his field, driving advancements that bridge theory and real-world solutions. 📡📶✨

Research Focus

Mr. Kambham Premchand’s research focuses on the development and optimization of tapered slot Vivaldi antennas for phased array applications, particularly in the domains of telecommunication and radar systems. His work emphasizes improving antenna performance, such as bandwidth, directivity, and efficiency, to meet the demands of modern wireless communication and defense technologies. This research is pivotal in advancing 5G networks, satellite communication, and next-generation radar systems. By contributing to cutting-edge antenna design, he aids in shaping future communication infrastructures. 📡📶🛰️

Publication Top Notes

Tapered slot vivaldi antenna for phased array applications

Conclusion

Mr. Kambham Premchand is highly qualified for the Best Researcher Award, given his sustained contributions, innovative research projects, and active engagement with state-of-the-art technologies. His ability to address contemporary challenges in antenna design and electromagnetic applications places him at the forefront of his field. 

 

Mahadev Prabhu | Mechanical Engineering | Best Researcher Award

Dr. Mahadev Prabhu | Mechanical Engineering | Best Researcher Award

Dr. Mahadev Prabhu, Amrita Vishwa Vidyapeetham, India

Dr. Mahadev J. Prabhu is a Post-Doctoral Fellow specializing in Fluid Mechanics at Amrita Vishwa Vidyapeetham, Kerala, India. He holds a Ph.D. in Mechanical Engineering, focusing on vortex suppression in liquid draining tanks. Dr. Prabhu has extensive expertise in turbo machines, gas dynamics, aerodynamics, and renewable energy. His research contributions include 12 journal publications, with several indexed in Scopus and WoS. He has received notable accolades such as the Amrita Innovation & Research Award and has been a reviewer for the International Journal of Occupational Safety and Health. Additionally, he has delivered invited talks on fluid dynamics, enriching the academic community with his findings. 🌊💨🚀

 

Publication Profile

Google Scholar

Education

Dr. Mahadev Prabhu completed his Ph.D. in Mechanical Engineering (2017-2023) at Amrita Vishwa Vidyapeetham, Kollam. Prior to this, he earned an MTech in Thermal and Fluids, where he was a Silver Medalist with a CGPA of 9.34 (2013-2015) from the same institution. Dr. Prabhu also completed a PG Diploma in Wind Resource Assessment (2012-2013) with a CGPA of 8.28. He holds a BTech in Aerospace Engineering (2008-2012) from Amrita Vishwa Vidyapeetham, Coimbatore. His early education includes high school at Durga Higher Secondary School, Kanhangad, where he excelled with an 89% in XII and 85% in X. 🎓✨

 

Teaching and Research Experience 📚🔧

Dr. Mahadev Prabhu currently serves as a Post-Doctoral Fellow at Amrita Vishwa Vidyapeetham (June 2023–Present), where he plays a key role in NBA accreditation tasks, including preparing course and program articulation matrices. He also handles various graduate and undergraduate courses in Mechanical Engineering and guides students in their research activities. Prior to this, Dr. Prabhu was an Assistant Professor at Ilahia College of Engineering and Technology (Jan 2017–June 2017) and Dhirajlal Gandhi College of Technology (Dec 2015–Jan 2017), delivering lectures in Fluid Mechanics, Thermal Engineering, Gas Dynamics, and Jet Propulsion, while also preparing course material and guiding students. 🏫🛠️

 

Awards and Recognitions 🏆

Dr. Mahadev Prabhu has received notable accolades throughout his academic journey. He was a University-level Silver Medalist in the MTech program in Thermal and Fluids (2013-2015) at Amrita Vishwa Vidyapeetham. His contributions to research were recognized when he was honored with the Amrita Innovation & Research Awards (AIRA) in the category of Journals/Book Chapters. Additionally, Dr. Prabhu has served as a reviewer for the prestigious International Journal of Occupational Safety and Health, further demonstrating his expertise and commitment to the academic community. 🏅📚

 

Certifications 🎓

Dr. Mahadev Prabhu has earned several prestigious certifications that highlight his expertise in Fluid Mechanics and related fields. He received an NPTEL certification in Fluid Machines with ELITE, scoring 81%. He further advanced his knowledge with another NPTEL certification in Advanced Concepts in Fluid Mechanics, achieving ELITE + Silver with 77%. In addition, Dr. Prabhu earned a certification in Ideal Fluid Flows Using Complex Analysis with ELITE + Gold, attaining an impressive 92%. These certifications reflect his dedication to continuous learning and excellence in mechanical engineering. 🏅🔧

 

Research Focus

Dr. Mahadev Prabhu’s research focuses primarily on fluid dynamics, specifically vortex formation during liquid draining processes from cylindrical and conical tanks. His work investigates the suppression and control of Rankine vortices, the effects of drain port geometry, surface roughness, and the influence of various tank designs on vortex behavior. His studies contribute to the optimization of fluid draining systems in aerospace and mechanical engineering applications. With a focus on numerical simulations and experimental investigations, his research enhances the understanding of fluid mechanics in real-world applications. 🚰🔬🌀✈️

 

Publication Top Notes  

  • Vortex formation during draining from cylindrical tanks: effect of drain port eccentricityJournal of Aerospace EngineeringCited by 272017 🌀🚀
  • Rankine vortex formation during draining: a new twin port suppression strategyJournal of Applied Fluid MechanicsCited by 172020 🌀💡
  • Rankine Vortex Suppression in Tanks with Conical Base: A Numerical InvestigationJournal of Spacecraft and RocketsCited by 152021 🛸🔬
  • Liquid Draining Through Polygonal Ports: An Investigation on Gas Entraining VorticesJournal of Spacecraft and RocketsCited by 122019 🌀🔧
  • Liquid draining through multiple ports: an investigation on air core vortex formationFluid DynamicsCited by 82021 💧🌀
  • Rankine vortex formation in cylindrical tanks with curved base: an experimental investigationJournal of Spacecraft and RocketsCited by 62022 🌀📊
  • Air core vortexing in liquid draining tanks: Influence of surface roughnessProceedings of the Institution of Mechanical EngineersCited by 52023 🌀🌊
  • New parameter to characterize rankine vortex formation in liquid draining tanksJournal of Spacecraft and RocketsCited by 32023 🔬🌀
  • Effect of roughness on air core vortexing phenomenon during draining of liquids from cylindrical tanks: An experimental investigationMaterials Today: ProceedingsCited by 22023 🧪🌐
  • Vortex Formation in Liquid Columns During Draining: Influence of Drain Port GeometryAdvances in Fluid and Thermal EngineeringCited by 22021 📏🌀