Ndy von kluge Paul | Mechanic | Excellence in Research

Dr. Ndy von kluge Paul | Mechanic | Excellence in Research

Dr. Ndy von kluge Paul, University of yaounde1, Cameroon

Dr. Paul Ndy von Kluge is a dedicated academic and civil engineer from Cameroon, currently serving as a permanent lecturer at the University of Yaoundé I, UIT Bois de Mbalmayo. With a PhD in Physics and Civil Engineering, his research focuses on nonlinear dynamics, chaos, and stochastic excitation in structural systems. Dr. Ndy has significant experience in civil engineering projects, including the Memve’ele Hydroelectric Dam. He has published numerous articles and books on mechanics and vibration control. Fluent in French, English, and German, Dr. Ndy is also a skilled programmer and proficient in engineering design software. 🏗️📚🔬

 

Publication Profile

Orcid

Academic Background & Research Focus 🎓🔬

Dr. Ndy von Kluge Paul holds a PhD in Physics from the University of Yaoundé 1, specializing in Nonlinear Pounding and Engineering Failure Analysis of non-smooth structural systems subjected to stochastic excitations. His research includes nonlinear dynamics, chaos theory, active nonlinear control, and dry friction dynamics. He completed his Master’s in Physics with a thesis on Dry Friction Oscillators under two-frequency excitations. Additionally, he earned a Master’s degree in Civil Engineering from ENSET, University of Douala, focusing on road requalification and construction of public works. His diverse expertise contributes to advanced structural control and analysis. 🏗️⚙️

 

Employment History 🏢🔧

Dr. Ndy von Kluge Paul has extensive experience in both civil engineering and academia. From 2009 to 2011, he served as an Ingénieur des Travaux Publics at the University of Yaoundé 2 Soa, working in the Direction of Infrastructures, Planning, and Development (DIPD). Between 2011 and 2020, he was assigned to the Ministry of Water and Energy (MINEE) and contributed to the Memve’ele Hydroelectric Project, overseeing the construction of the hydroelectric plant and energy evacuation systems. From 2020, he worked at Electricity Development Corporation (EDC) on maintenance projects for the Memve’ele Dam. Since May 2024, he has been a permanent lecturer at Université de Yaoundé 1. 🎓⚡🔨

 

Teaching Experience 📚👨‍🏫

Dr. Ndy von Kluge Paul has a rich teaching background spanning several years. From 2002 to 2006, he taught Physics, Chemistry, and Mathematics at Collège Privé Laïc ‘Les Bambis’ and other institutions. He also worked as a temporary secondary school teacher. Between 2011 and 2023, he provided professional supervision for students from major engineering schools like Polytechnique, FGI Douala, ENSTP at the Memve’ele Hydroelectric Project site. In 2021-2022, he taught at Institut Universitaire NGODO Melingui. Since 2022, he has been supervising DUT and License students at UIT Bois, University of Yaoundé 1. 🎓📘

 

Research Interests 🌐🔧

Dr. Ndy von Kluge Paul’s research spans a wide array of dynamic fields. His primary focus includes Spatiotemporal Chaos, Electrical Lines, and Nonlinear Oscillators, with an emphasis on Mathematical Modeling and Computational Analysis of complex systems in Electromechanics and Fluid Dynamics. His work extensively explores Dissipative Systems, contributing significantly to the fields of Civil Engineering, Mechanical Engineering, and Powertrain Dynamics. Additionally, Dr. Paul has made notable advancements in Non-linear Vibration, Vibro-acoustics, and Noise Control, driving innovations in various engineering applications. ⚙️📐🌊

 

Publication Top Notes

Application to nonlinear mechanical systems with dry friction: hard bifurcation in SD oscillator

Koh-ichi Sugimoto | Mechanical Engineering | Best Researcher Award

Prof. Dr. Koh-ichi Sugimoto | Mechanical Engineering | Best Researcher Award

Prof. Dr. Koh-ichi Sugimoto, Shinshu University, Japan

Prof. Dr. Koh-ichi Sugimoto is a renowned Japanese academic and researcher in mechanical systems engineering. He holds a Doctor of Engineering from Tokyo Metropolitan University (1985) and is a Professor Emeritus at Shinshu University. His research focuses on TRIP-aided steels, precision die, and carbon nano composites. With over 9 books, 176 journal papers, and 63 patents, he has made significant contributions to materials science. Prof. Sugimoto has received numerous awards, including the 2024 Metals Outstanding Reviewer Award and the 2014 Gilbert R. Speich Award. He also serves on several editorial boards and advisory committees. 📚🔬

 

Publication Profile

Scopus

Orcid

Education 🎓

Prof. Dr. Koh-ichi Sugimoto holds an impressive academic background, beginning with his Bachelor of Engineering (1973) and Master of Engineering (1975) degrees from Shinshu University. His passion for materials science led him to pursue a Doctor of Engineering at Tokyo Metropolitan University, where he completed his doctoral research in 1985. His doctoral dissertation focused on “A Basic Study on Deformation Mechanism of High-Strength Dual-Phase Steels,” a topic that has influenced his lifelong research in steel technology and materials engineering. Prof. Sugimoto’s strong educational foundation has shaped his influential contributions to the field. 📘🔬

 

Work Experience 💼

Prof. Dr. Koh-ichi Sugimoto has had a distinguished career spanning several decades. He served as a Research Advisor at OP Jindal University since 2019. Prior to that, he was Professor Emeritus at Shinshu University (2016) and held various key roles including Advisor to the President (2009-2010) and Associate Dean (2008). His leadership also extended to serving as Councilor (2005-2007) and Special Advisor to the President (2001-2003) at Shinshu University. With over 30 years of teaching experience, Prof. Sugimoto was a Professor (1998-2015) and Associate Professor (1987-1997). He also worked as an Assistant Manager at Daido Steel Co. Ltd. (1986) and Assistant Professor at Tokyo Metropolitan University (1975-1985). 🌟📚

 

Awards 🏆

Prof. Dr. Koh-ichi Sugimoto has received several prestigious awards throughout his career. Notably, he is the recipient of the 2024 Metals Outstanding Reviewer Award (announced in March 2025) from MDPI. He earned the Metallography, Microstructure, and Analysis Editor’s Choice Award in 2016 for his paper on TRIP-Aided Martensitic Steel. In 2014, he was honored with the Gilbert R. Speich Award for his work on advanced ultrahigh-strength steels. Other awards include the Materials Significant Contribution Award (2013), Charles Hatchett Award (2006), and the Nishiyama Commemorative Prize (2001). 🌟📚

 

Research Focus 📚🔬

Prof. Dr. Koh-ichi Sugimoto’s research primarily revolves around ultrahigh-strength TRIP-aided steels and their mechanical properties, microstructure, and deformation behavior. His work explores bainitic ferrite and martensite matrix structures in steels, including their impact toughness, fatigue properties, and cold formability. He also investigates the effects of thermomechanical processing on hydrogen embrittlement and the influence of mean normal stress on strain-hardening behaviors. His contributions to advanced materials are crucial in enhancing steel applications, particularly in automotive and structural engineering industries. ⚙️🔧🛠️

 

Publication Top Notes 📚

  • Evaluation of Shear-Punched Surface Layer Damage in Ultrahigh-Strength TRIP-Aided Steels (2024) 📘  | DOI: 10.3390/met14091034
  • Effects of Mean Normal Stress and Microstructural Properties on Deformation Properties of Ultrahigh-Strength TRIP-Aided Steels (2024) 📘 | Cited by: 1 | DOI: 10.3390/ma17143554
  • Evaluation of Shear-Punched Surface Layer Damage in Three Types of High-Strength TRIP-Aided Steel (2024) 📘 | Cited by: 1 | DOI: 10.3390/met14050531
  • Effects of Mean Normal Stress on Strain-Hardening, Strain-Induced Martensite Transformation, and Void-Formation Behaviors in High-Strength TRIP-Aided Steels (2024) 📘 | Cited by: 3 | DOI: 10.3390/met14010061
  • Effects of Partial Replacement of Si by Al on Impact Toughness of 0.2%C-Si-Mn-Cr-B TRIP-Aided Martensitic Steel (2023) 📘 | DOI: 10.3390/met13071206
  • Effects of Partial Replacement of Si by Al on Cold Formability in Two Groups of Low-Carbon Third-Generation Advanced High-Strength Steel Sheet: A Review (2022) 📚 | Cited by: 3 | DOI: 10.3390/met12122069
  • Effects of Thermomechanical Processing on Hydrogen Embrittlement Properties of Ultrahigh-Strength TRIP-Aided Bainitic Ferrite Steels (2022) 📘 | Cited by: 1 | DOI: 10.3390/met12020269
  • Cold Formabilities of Martensite-Type Medium Mn Steel (2021) 📘 | Cited by: 3 | DOI: 10.3390/met11091371
  • Influence of Cooling Process Routes after Intercritical Annealing on Impact Toughness of Duplex Type Medium Mn Steel (2021) 📘 | Cited by: 4 | DOI: 10.3390/met11071143
  • Recent Progress of Low and Medium-Carbon Advanced Martensitic Steels (2021) 📚 | DOI: 10.3390/met11040652

 

Prabhakar M | Engineering | Best Researcher Award

Dr. Prabhakar M  | Engineering | Best Researcher Award | Engineering | Best Researcher Award

Professor, Vellore Institute of Technology, Chennai,  India

M. Prabhakar is a seasoned academic with over 23 years of experience in teaching and research in electrical engineering. He holds a B.E. in Electrical and Electronics Engineering, an M.E. in Power Electronics and Drives, and a Ph.D. in Electrical Engineering. Currently a professor at Vellore Institute of Technology (VIT), Chennai, he has made significant contributions to the fields of power electronics, DC-DC converters, and DC microgrids, with over 50 published research articles. He has been actively involved in the Centre of Smart Grid Technologies and has received a seed grant of Rs. 4.53 lakhs to support his research. In recognition of his work, he has received the Research Award from VIT every year since 2012, and the Outstanding Teacher Award in 2009. His achievements in research, teaching, and securing funding demonstrate his strong qualifications, making him an excellent candidate for the Research for Best Researcher Award.

Profile:

Education

M. Prabhakar’s educational background demonstrates a strong commitment to the field of electrical engineering. He earned his Bachelor of Engineering (B.E.) degree in Electrical and Electronics Engineering from the University of Madras, Chennai, in 1998. Building on this foundation, he pursued a Master of Engineering (M.E.) in Power Electronics and Drives from Bharathidasan University, Tiruchirappalli, which he completed in 2000. His academic journey culminated in 2012 with a Ph.D. in Electrical Engineering from Anna University, Chennai. These degrees represent his deep expertise in the domains of power electronics and electrical systems, establishing the knowledge base from which his research has flourished. His educational progression highlights a focused pursuit of specialization in power electronics, further enhanced by practical and theoretical insights gained throughout his academic career. Prabhakar’s qualifications position him as an expert in his field, equipping him with the necessary foundation to drive impactful research and academic contributions.

Professional Experiences

M. Prabhakar brings over 23 years of professional experience in academia, combining teaching, research, and leadership in the field of electrical engineering. He began his career as an educator after earning his M.E. in Power Electronics and Drives in 2000. His extensive experience includes his roles as Associate Professor at Vellore Institute of Technology (VIT) since 2012, and later, Professor since 2019. He is actively involved in research related to power electronics, DC-DC converters, and microgrids. His engagement with the Centre of Smart Grid Technologies from 2022 onwards showcases his contributions to advancing energy systems. M. Prabhakar has co-authored over 50 research articles in high-impact journals and conferences and serves as a reviewer for numerous reputable journals. His expertise has been acknowledged through several awards, including the VIT Research Award, which he has received annually since 2012, and the Outstanding Teacher Award in 2009.

Research Skills

M. Prabhakar possesses a diverse set of research skills and experiences honed over more than 23 years in academia. His expertise in power electronics and DC microgrids is complemented by a robust publication record, with over 50 research articles in high-impact journals and conferences. He has successfully led various research projects, including securing a seed grant of Rs. 4.53 lakhs from Vellore Institute of Technology. As an active reviewer for esteemed journals, he critically engages with cutting-edge research, enhancing his analytical skills. His experience extends to mentoring students and collaborating with peers, fostering an environment of innovation and inquiry. Additionally, his involvement with the Centre of Smart Grid Technologies further enriches his research profile, enabling him to explore practical applications of his work. Collectively, these experiences underscore his capability as a researcher dedicated to advancing knowledge in electrical engineering and power systems.

Award And Recognitions

M. Prabhakar is a distinguished academic with over 23 years of teaching and research experience in electrical engineering. He has been recognized with several prestigious awards, including the Outstanding Teacher Award in 2009 for his exceptional contributions to education. Since 2012, he has received the Research Award from Vellore Institute of Technology (VIT) for his impactful research contributions, demonstrating his commitment to advancing knowledge in power electronics and smart grid technologies. His extensive publication record includes over 50 co-authored articles in high-impact journals and conferences, showcasing his active involvement in the research community. Additionally, he secured a seed grant of Rs. 4.53 lakhs to support his innovative research projects. M. Prabhakar’s accolades reflect his dedication to excellence in teaching, research, and community impact, solidifying his reputation as a leading figure in the field of electrical engineering.

Conclusion

M. Prabhakar’s extensive qualifications, coupled with over 23 years of teaching and research experience, establish him as a leading candidate for the Research for Best Researcher Award. His impressive academic background includes a B.E., M.E., and Ph.D. in Electrical Engineering, demonstrating his deep commitment to the field. Prabhakar’s contributions to power electronics, DC-DC converters, and DC microgrids are underscored by the publication of over 50 research articles in high-impact journals. His consistent recognition through the Research Award at Vellore Institute of Technology since 2012 and the Outstanding Teacher Award in 2009 further validate his influence as an educator and researcher. Additionally, securing a significant seed grant and his association with the Centre of Smart Grid Technologies highlight his innovative approach to research. Overall, M. Prabhakar’s exceptional academic credentials, research contributions, and ongoing dedication to advancing electrical engineering make him an exemplary choice for this prestigious award.

Publication Top Notes

  • Article
    Title: Non-isolated high gain DC–DC converter with ripple-free source current
    Authors: Valarmathy, A.S., Prabhakar, M.
    Journal: Scientific Reports
    Year: 2024
    Citations: 1
  • Book Chapter
    Title: High gain DC-DC converters for photovoltaic applications
    Authors: Prabhakar, M., Revathi, B.S.
    Book: Power Converters, Drives and Controls for Sustainable Operations
    Year: 2024
    Citations: 0
  • Editorial
    Title: Modelling, design and control of power electronic converters for smart grids and electric vehicle applications
    Authors: Prabhakar, M., Tofoli, F.L., Elgendy, M.A., Wang, H.
    Journal: IET Power Electronics
    Year: 2024
    Citations: 0
  • Article
    Title: Reconfigurable high step-up DC to DC converter for microgrid applications
    Authors: Tewari, N., Paul, N., Jayaraman, M., Prabhakar, M.
    Journal: IET Power Electronics
    Year: 2024
    Citations: 6
  • Article
    Title: High gain interleaved boost-derived DC-DC converters – A review on structural variations, gain extension mechanisms and applications
    Authors: Valarmathy, A.S., Prabhakar, M.
    Journal: e-Prime – Advances in Electrical Engineering, Electronics and Energy
    Year: 2024
    Citations: 2
  • Article (in Press)
    Title: Dual-input step-up switched-capacitor multilevel inverter with reduced voltage stress on devices
    Authors: Ghelichi, A., Varesi, K., Zeinaly, A., Prabhakar, M.
    Journal: International Journal of Circuit Theory and Applications
    Year: 2024
    Citations: 0
  • Article (in Press)
    Title: High gain interleaved DC-DC converter with ripple-free input current and low device stress
    Authors: Valarmathy, A.S., Mahalingam, P., Prabhakar, M.
    Journal: International Journal of Electronics
    Year: 2024
    Citations: 1
  • Conference Paper
    Title: Performance Analysis of Asymmetric High Gain Multi-Input Converter under Widely Fluctuating Inputs
    Authors: Mohana Preethi, V., Prabhakar, M., Kumar, N.S.
    Conference: ACM International Conference Proceeding Series
    Year: 2023
    Citations: 0
  • Book Chapter
    Title: Interleaved Cubic Boost Converter
    Authors: Ram, C.S., Shiggavi, A.B., Maharaajan, A.A., Thiyagarajan, R.A., Prabhakar, M.
    Book: IoT and Analytics in Renewable Energy Systems (Volume 2): AI, ML and IoT Deployment in Sustainable Smart Cities
    Year: 2023
    Citations: 1
  • Conference Paper
    Title: Design and Simulation of Coupled Inductor-Based Asymmetric High Gain Multi-input DC–DC Converters
    Authors: Preethi, V.M., Prabhakar, M.
    Conference: Lecture Notes in Electrical Engineering
    Year: 2023
    Citations: 1

 

Zhipeng Zhao | Engineering | Best Researcher Award

Assist Prof Dr. Zhipeng Zhao | Engineering | Best Researcher Award

Assistant Professor, Tongji University, China

Dr. Zhipeng Zhao, currently an Assistant Professor at Tongji University, showcases an impressive academic and research profile, making him a strong candidate for the Research for Best Researcher Award. With a Ph.D. in Civil Engineering and a GPA of 90.30, he has garnered several accolades, including recognition among the World’s Top 2% Scientists in 2024. His research interests focus on artificial intelligence in structural health monitoring and innovative anti-seismic systems, contributing significantly to advancements in civil engineering. He has published numerous peer-reviewed articles, demonstrating a commitment to advancing knowledge in his field. His collaborative work has resulted in impactful research, earning him prestigious fellowships and awards, such as the JSPS Foreign Research Fellow and Shanghai Leading Talents recognition. Dr. Zhao’s combination of research excellence, innovation, and leadership positions him as an exemplary figure in civil engineering, underscoring his suitability for this prestigious award.

Profile:

Education

Dr. Zhipeng Zhao earned his Ph.D. in Civil Engineering from Tongji University, Shanghai, China, in 2021, where he achieved an impressive GPA of 90.30/100. His academic journey began at the same institution, where he completed his Bachelor’s degree in Civil Engineering in 2017, graduating with a remarkable GPA of 93.00/100. During his doctoral studies, Dr. Zhao focused on advanced topics in structural health monitoring and vibration control, demonstrating a commitment to enhancing the resilience of civil engineering structures. His educational background has provided him with a solid foundation in both theoretical and practical aspects of civil engineering, equipping him with the skills necessary to tackle complex engineering challenges. Dr. Zhao’s strong academic performance and rigorous training reflect his dedication to excellence in the field, positioning him as a valuable contributor to research and innovation in civil engineering.

 

Research Skills

Dr. Zhipeng Zhao possesses exceptional research skills that significantly contribute to the advancement of civil engineering, particularly in artificial intelligence-based structural health monitoring and vibration control. His ability to develop innovative anti-seismic structural systems is demonstrated through numerous peer-reviewed publications, reflecting a strong command of both theoretical and practical applications. Dr. Zhao excels in employing cutting-edge methodologies for ground motion simulation, allowing for accurate predictions and enhanced structural safety. His collaborative work as a corresponding author on various high-impact journals showcases his capacity to lead multidisciplinary teams and drive impactful research initiatives. Additionally, his recognition as one of the world’s top 2% scientists and several prestigious awards underscore his commitment to excellence in research. Overall, Dr. Zhao’s research skills are characterized by a blend of creativity, technical proficiency, and a keen understanding of contemporary challenges in civil engineering, making him a leading candidate for the Research for Best Researcher Award.

 

Professional Experiences

Dr. Zhipeng Zhao, currently an Assistant Professor at Tongji University, has cultivated a distinguished career in civil engineering, particularly in structural health monitoring and vibration control. He has served as a JSPS Foreign Research Fellow at Tohoku University, Japan, where he engaged in advanced research from 2022 to 2023. Prior to this, he completed a postdoctoral fellowship at the Hong Kong Polytechnic University and City University of Hong Kong. Dr. Zhao’s academic journey began with a Bachelor’s and a Ph.D. in Civil Engineering from Tongji University, where he excelled in his studies. His remarkable contributions to the field are underscored by multiple honors, including recognition as one of the world’s top 2% scientists in 2024 and the prestigious Shanghai Leading Talents (Overseas) Young Talents award in 2022. With an extensive publication record, Dr. Zhao is a leader in innovative anti-seismic structural systems.

Award And Recognition

Dr. Zhipeng Zhao, an Assistant Professor at Tongji University, has garnered significant accolades for his groundbreaking research in civil engineering, particularly in artificial intelligence-based structural health monitoring and seismic resilience. Recognized among the world’s top 2% of scientists in 2024, he has received prestigious awards, including the Shanghai Leading Talents (Overseas) Young Talents in 2022 and the Tongji University’s top ten scientific achievements with transformative potential in 2023. His work has been frequently cited, earning him the Most Cited Articles recognition in Engineering Structures from 2018 to 2021. Notably, Dr. Zhao was honored with first and second prizes for outstanding papers at the National Structural Engineering Academic Conference in 2018 and 2023, respectively, further solidifying his reputation as a leading researcher in his field. His exceptional contributions demonstrate a commitment to advancing civil engineering and improving infrastructure resilience against natural disasters.

Conclusion

In summary, Dr. Zhipeng Zhao exemplifies excellence in civil engineering, particularly in the fields of artificial intelligence-based structural health monitoring and seismic control systems. His impressive academic background, highlighted by a Ph.D. from Tongji University, is complemented by numerous accolades, including recognition as one of the world’s top 2% scientists in 2024. Dr. Zhao’s innovative contributions, reflected in over 40 peer-reviewed publications, demonstrate his commitment to advancing structural resilience against seismic activities. His research not only addresses critical challenges in civil engineering but also significantly impacts the safety and sustainability of urban infrastructure. As an Assistant Professor at Tongji University and a recipient of multiple prestigious awards, Dr. Zhao’s ongoing research initiatives position him as a leader in the field. His dedication to enhancing structural engineering practices makes him a worthy candidate for the Research for Best Researcher Award.

Publication Top Notes

  • Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system
    R. Zhang, Z. Zhao, K. Dai
    Engineering Structures, 180, 29-39, 221 citations, 2019
  • Damping enhancement principle of inerter system
    R. Zhang, Z. Zhao, C. Pan, K. Ikago, S. Xue
    Structural Control and Health Monitoring, 27(5), e2523, 147 citations, 2020
  • Seismic response mitigation of structures with a friction pendulum inerter system
    Z. Zhao, R. Zhang, Y. Jiang, C. Pan
    Engineering Structures, 193, 110-120, 125 citations, 2019
  • A tuned liquid inerter system for vibration control
    Z. Zhao, R. Zhang, Y. Jiang, C. Pan
    International Journal of Mechanical Sciences, 164, 105171, 108 citations, 2019
  • Optimal design based on analytical solution for storage tank with inerter isolation system
    Y. Jiang, Z. Zhao, R. Zhang, D. De Domenico, C. Pan
    Soil Dynamics and Earthquake Engineering, 129, 105924, 91 citations, 2020
  • Optimal design of an inerter isolation system considering the soil condition
    Z. Zhao, Q. Chen, R. Zhang, C. Pan, Y. Jiang
    Engineering Structures, 196, 109324, 76 citations, 2019
  • Energy dissipation mechanism of inerter systems
    Z. Zhao, Q. Chen, R. Zhang, C. Pan, Y. Jiang
    International Journal of Mechanical Sciences, 105845, 74 citations, 2020
  • Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks
    R. Zhang, Z. Zhao, C. Pan
    Soil Dynamics and Earthquake Engineering, 114, 639-649, 70 citations, 2018
  • Impact of soil–structure interaction on structures with inerter system
    Q. Chen, Z. Zhao, R. Zhang, C. Pan
    Journal of Sound and Vibration, 433, 1-15, 65 citations, 2018
  • A particle inerter system for structural seismic response mitigation
    Z. Zhao, R. Zhang, Z. Lu
    Journal of the Franklin Institute, Engineering and Applied Mathematics, 356, 54 citations, 2019
  • Comfort based floor design employing tuned inerter mass system
    Q. Chen, Z. Zhao, Y. Xia, C. Pan, H. Luo, R. Zhang
    Journal of Sound and Vibration, 458, 143-157, 47 citations, 2019
  • Displacement mitigation–oriented design and mechanism for inerter-based isolation system
    Z. Zhao, R. Zhang, N.E. Wierschem, Y. Jiang, C. Pan
    Journal of Vibration and Control, 27(17-18), 1991-2003, 46 citations, 2021
  • Seismic performance upgrading of containment structures using a negative-stiffness amplification system
    Z. Zhao, Y. Wang, X. Hu, D. Weng
    Engineering Structures, 262, 114394, 42 citations, 2022
  • A negative stiffness inerter system (NSIS) for earthquake protection purposes
    Z. Zhao, Q. Chen, R. Zhang, Y. Jiang, C. Pan
    Smart Structures and Systems, 26(4), 481-493, 33 citations, 2020
  • Enhanced energy dissipation benefit of negative stiffness amplifying dampers
    Z. Zhao, Q. Chen, X. Hu, R. Zhang
    International Journal of Mechanical Sciences, 240, 107934, 32 citations, 2023
  • Input energy reduction principle of structures with generic tuned mass damper inerter
    Z. Zhao, R. Zhang, C. Pan, Q. Chen, Y. Jiang
    Structural Control and Health Monitoring, 28(1), e2644, 31 citations, 2021
  • Interaction of two adjacent structures coupled by inerter-based system considering soil conditions
    Z. Zhao, Q. Chen, R. Zhang, Y. Jiang, Y. Xia
    Journal of Earthquake Engineering, 26(6), 2867-2887, 28 citations, 2022
  • Seismic demand and capacity models, and fragility estimates for underground structures considering spatially varying soil properties
    Z. He, H. Xu, P. Gardoni, Y. Zhou, Y. Wang, Z. Zhao
    Tunnelling and Underground Space Technology, 119, 104231, 27 citations, 2022
  • Analytical optimization of the tuned viscous mass damper under impulsive excitations
    Z. Zhao, X. Hu, R. Zhang, Q. Chen
    International Journal of Mechanical Sciences, 228, 107472, 25 citations, 2022
  • Friction pendulum-strengthened tuned liquid damper (FPTLD) for earthquake resilience of isolated structures
    Z. Zhao, X. Hu, Q. Chen, Y. Wang, N. Hong, R. Zhang
    International Journal of Mechanical Sciences, 244, 108084, citations not specified.

George Nnanna | Engineering | Best Researcher Award

Prof Dr. George Nnanna | Engineering | Best Researcher Award

Prof Dr. George Nnanna, The University of Texas Permian Basin, United States

Based on the provided information, Prof. Dr. George Nnanna would be a suitable candidate for the Research for Best Researcher Award due to his extensive contributions in academia, strategic planning, and research leadership. Below is an analysis of his achievements:

Publication profile

Strategic Planning and Leadership

Prof. Dr. Nnanna has demonstrated a strong capacity for strategic planning, having led the development of four strategic plans and actively participated in two university-level strategic plans. His leadership in these initiatives, such as targeting increased graduation rates amidst challenges due to the local economic climate, highlights his ability to navigate complex issues and implement effective strategies.

Fundraising and Resource Management

Dr. Nnanna’s experience in managing a substantial budget of nearly $21 million and collaborating on major fundraising efforts totaling $9.74 million underscores his capability in financial stewardship and resource allocation. His involvement in the $55 million Engineering Building project further reflects his skills in securing and managing large-scale investments.

Research Funding and Grants

With over $14 million in external grants generated as a Principal Investigator (PI) or Co-Principal Investigator (Co-PI), Dr. Nnanna’s success in securing diverse funding sources—federal, industry, city, and state—demonstrates his expertise in research proposal writing and his ability to attract significant research support.

Academic Achievements and Honors

His academic background, including a Ph.D. in Mechanical Engineering from The University of Texas at Arlington and executive leadership training from Harvard University and Oxford University, positions him as a well-rounded scholar and leader. His numerous honors, including a fellowship with the American Society of Mechanical Engineers and recognition by the Carnegie African Diaspora Fellowship, further affirm his stature in the academic community.

Contributions to Education and Accreditation

Prof. Dr. Nnanna’s role as Founding Dean and his leadership in ABET accreditation processes for engineering programs demonstrate his commitment to maintaining high educational standards. His involvement in teaching advanced engineering courses and advancing student learning experiences emphasizes his dedication to academic excellence.

Publication Top Notes

  • Enhanced solar-driven evaporation and mineral extraction from hypersaline produced water using low-cost microporous photothermal foam 🧪🌞
    • Nnanna, A.G.A., Nnanna, N.A., Heliyon, 2024, 10(8), e29321.
    • Cited by: 0
  • Compositional Analysis of Conventional and Unconventional Permian Basin-Produced Waters: A Simple Tool for Predicting Major Ion Composition 💧🔍
    • Ogbuji, B., Agwu Nnanna, A.G., Engle, M., Amesquita, R., SPE Production and Operations, 2022, 37(3), pp. 383–396.
    • Cited by: 6
  • A novel activated carbon enabled steam generation system under simulated solar light 🌞🔋
    • Mishra, A., Nnanna, A.G.A., Journal of Electronic Packaging, 2019, 141(3), 031015.
    • Cited by: 0
  • Optimization of Water Consumption in Hybrid Evaporative Cooling Air Conditioning Systems for Data Center Cooling Applications 🌬️💻
    • Ndukaife, T.A., Nnanna, A.G.A., Heat Transfer Engineering, 2019, 40(7), pp. 559–573.
    • Cited by: 19
  • Enhancement of Performance and Energy Efficiency of Air Conditioning System Using Evaporatively Cooled Condensers ❄️⚡
    • Ndukaife, T.A., Nnanna, A.G.A., Heat Transfer Engineering, 2019, 40(3-4), pp. 375–387.
    • Cited by: 10
  • Membrane fouling mitigation in water filtration using piezoelectrics 💧📊
    • Aronu, O., Abramowitz, H., Nnanna, A.G., ASME International Mechanical Engineering Congress and Exposition, 2019, 8.
    • Cited by: 0
  • Net-zero water (NZW) reuse desiccant assisted evaporative cooling system for data centers 🌱💧
    • Okposio, D., Agwu Nnanna, A.G., Abramowitz, H., ASME International Mechanical Engineering Congress and Exposition, 2019, 8.
    • Cited by: 1
  • High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface 🧲🔬
    • Ndukaife, J.C., Xuan, Y., Nnanna, A.G.A., Wereley, S.T., Boltasseva, A., ACS Nano, 2018, 12(6), pp. 5376–5384.
    • Cited by: 46
  • Development of a low cost self-sustaining water distillation system using activated carbon nanofluids 💧🔥
    • Mishra, A., Nnanna, A.G.A., ASME International Mechanical Engineering Congress and Exposition, 2018, 6B-2018.
    • Cited by: 0
  • Smartphone-based device for monitoring chemical pollutants in water 📱🧪
    • Ozeh, S., Nnanna, A.G.A., Ndukaife, J.C., ASME International Mechanical Engineering Congress and Exposition, 2018, 3.
    • Cited by: 1

Conclusion

Prof. Dr. George Nnanna’s strategic vision, leadership in resource management, successful acquisition of research funding, and commitment to academic and educational excellence make him a strong contender for the Research for Best Researcher Award. His multifaceted contributions to engineering education and his proactive approach to overcoming institutional challenges highlight his significant impact in the field.