HARPREET AASI | Engineering | Women Researcher Award

HARPREET AASI | Engineering | Women Researcher Award

Dr HARPREET AASI, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, India

Dr. Harpreet Aasi is a Postdoctoral Fellow in Thermal Engineering at IIT Bombay (2024–present). He holds a Ph.D. in Thermal Engineering from IIT Roorkee (2014–2020), an M.Tech. from NIT Raipur, and a B.E. in Mechanical Engineering. His expertise lies in heat transfer enhancement, particularly using ultrasound in electronic cooling systems, involving both numerical (ANSYS Fluent) and experimental methods. A recipient of multiple awards, including the Silver Medal at NIT Raipur, Dr. Aasi has contributed to prestigious projects sponsored by CSIR and DST. He is also an active reviewer for high-impact journals and has published extensively in heat exchanger optimization. πŸ“šπŸ’‘

Publication Profile

Scopus

Education

Dr. Harpreet Aasi is a distinguished researcher specializing in thermal engineering. Currently, he is pursuing a Postdoctoral Fellowship at the Indian Institute of Technology Bombay (March 2024 – present). He earned his Ph.D. with honors in Thermal Engineering from IIT Roorkee (2014-2020) and completed an M.Tech. in Thermal Engineering with an impressive CPI of 8.96/10 at NIT Raipur (2011-2013). His academic journey began with a B.E. in Mechanical Engineering from New Government Engineering College Raipur, achieving a stellar CPI of 8.99/10 (2006-2010). Dr. Aasi’s dedication to academics is reflected in his strong foundations, scoring 76% in Intermediate (2005-2006) and 85% in Matriculation (2003-2004). πŸ“šβœ¨

Experience

Dr. Aasi conducted numerical (Ansys Fluent) and experimental studies (non-intrusive optical techniques) on single-phase and two-phase flow boiling processes for electronic cooling systems. This research explored the effect of ultrasound parameters, demonstrating its potential for enhancing heat transfer. Ph.D. Research: Investigations on Three-fluid Compact Plate-fin Heat Exchanger πŸŒ‘οΈπŸ“Š Dr. Aasi performed extensive experimental and numerical investigations (MATLAB coding) under transient and steady states, addressing flow maldistribution, inlet temperature non-uniformity, and ambient heat interaction. Innovative modeling optimized geometrical attributes for diverse plate-fin types. M.Sc. Research: Parametric Study of Orthotropic Annular Fin with Contact Resistance πŸŒ€πŸ› οΈ Dr. Aasi developed a 2D dimensionless steady-state model to assess the thermal performance of orthotropic annular fins, focusing on polymer matrix composites with axis-dependent properties.

Award and Scholarships

Dr. Harpreet Aasi has an impressive academic record, including a Silver Medal at the National Institute of Technology (NIT) Raipur in 2012-2013 πŸ₯ˆ. He received the Academic Excellence Award at NIT Raipur in 2011-2012 πŸŽ“. Ranked 10th in the Chhattisgarh Swami Vivekanand Technical University state toppers list, he was 1st in New Government Engineering College Raipur in 2010 πŸ†. Dr. Aasi secured prestigious fellowships, including the Institute Postdoctoral Fellowship at IIT Bombay in 2024 πŸ§‘β€πŸ”¬ and MHRD scholarships for his Ph.D. (2014-2019) and M.Tech. (2011-2013) πŸ“š. Additionally, he earned state-level merit scholarships during his B.E. studies (2007-2010) πŸ….

Project contribution

Dr. Harpreet Aasi has conducted groundbreaking research on optimizing the performance of three-fluid heat exchangers through both numerical and experimental investigations. Sponsored by CSIR, this research aims to improve heat transfer efficiency and system performance. Additionally, his study on the effect of temperature and flow nonuniformities on three-fluid compact heat exchangers, sponsored by DST, delves into understanding how such factors influence overall efficiency. These contributions are crucial in advancing thermal management systems, with potential applications in various industries, from energy to manufacturing. πŸŒ‘οΈπŸ”§

Research focus

Dr. Harpreet Aasi’s research primarily focuses on the thermo-hydraulic performance and optimization of multi-fluid heat exchangers, particularly three-fluid systems. His work investigates the effects of flow non-uniformity, ambient heat ingression, and temperature nonuniformity on the efficiency and dynamic behavior of cross-flow and plate-fin heat exchangers. Using advanced techniques like Artificial Neural Networks (ANN) and second law analysis, he aims to improve heat exchanger designs for enhanced thermal management in various engineering applications. His research is crucial for energy efficiency and thermal optimization in industries such as cryogenics, power generation, and heat recovery. πŸ”₯πŸ”§βš™οΈπŸ’‘

Publication top notes

Investigation on cross-flow three-fluid compact heat exchanger under flow non-uniformity: an experimental study with ANN prediction

The impact of ambient heat ingression on performance of cryogenic three-fluid cross-flow compact heat exchanger

Experimental investigation and ANN modelling on thermo-hydraulic efficacy of cross-flow three-fluid plate-fin heat exchanger

Detailed design optimization of three-fluid parallel-flow plate-fin heat exchanger using second law analysis

Influence of flow non-uniformity on the dynamic behaviour of three-fluid cross-flow compact heat exchanger

A novel equivalence approximate model for second law based optimization of three-fluid cross-flow plate-fin heat exchanger using genetic algorithm

 

Saad Al-Haidari | Engineering | Best Researcher Award

Mr. Saad Al-Haidari | Engineering | Best Researcher Award

Mr. Saad Al-Haidari, Al-Mustansiriyah university, College of Engineering, Mechanical Department, Iraq

Saad Raad Mujid is an Iraqi mechanical engineer from Al-Najaf, born on December 21, 1997. He holds a Bachelor’s degree in Mechanical Engineering (2020) and a Master’s in Thermal Power Engineering from the University of Mustansiriyah. With skills in ANSYS Fluent, AutoCAD, MATLAB, and other engineering software, Saad excels in thermofluids, heat transfer, CFD, and 3D design. His professional experience includes 15 months at Hyundai on the Karbala refinery project and other roles in various engineering companies. He is fluent in Arabic and proficient in English, making him well-rounded in both technical and communication aspects. πŸ“ŠπŸ› οΈπŸ’»

 

Publication Profile

Orcid

Educational Qualifications

Saad obtained his Bachelor’s degree in Mechanical Engineering in 2019/2020, followed by a Master’s degree in Thermal Power Engineering. His academic background covers thermal, power, and hydraulic engineering, alongside engineering economics. He is proficient in applying engineering principles to design and manufacturing tasks.

Experience

Saad has gained substantial practical experience through various courses and projects. He completed two significant studies on heat convection from staggered pin fins arrays at the University of Mustansiriyah, each spanning six months. In addition, he has completed safety courses, including one on general industry safety and health, as well as well logging and safety at the Osha Foundation in Basra.

Conclusion

Mr. Saad Raad Mujid demonstrates a solid academic foundation in mechanical and thermal power engineering, along with significant hands-on experience in industry-related projects. His proficiency with cutting-edge software and commitment to continuous learning make him a strong contender for the Research for Best Researcher Award. His skills in design, heat transfer, and thermofluids, combined with his experience in major engineering projects, position him well for this recognition.

 

Publication Top Notes

  • “Analysis of thermohydraulic flow and enhancement heat performance in 3D dimple tube based on varying geometrical configurations” (2024) πŸ“„πŸ”₯ | Saad Raad Al‐Haidari, Ahmed Ramadhan Al‐Obaidi
  • “Evaluation of hydraulic thermal flow and heat performance augmentation in a 3D tube fitted with varying concavity dimple turbulator configurations” (2024) πŸ“„πŸ”₯ | Saad Raad Al‐Haidari, Ahmed Ramadhan Al‐Obaidi