Weimin Xu | Engineering | Best Researcher Award

Mr. Weimin Xu | Engineering | Best Researcher Award 

Associate professor, at Shanghai Maritime University, China.

Dr. Weimin Xu, Ph.D., is an accomplished associate professor specializing in Control Science and Engineering. 🎓 With a career spanning over three decades, Dr. Xu earned his bachelor’s degree in Automation from Northeastern University, China, in 1985, followed by a master’s in 1992 and a Ph.D. in 1997 from the same institution. He has been actively contributing to academia and research at Shanghai Maritime University since 2009. In 2013, he further enriched his academic exposure through a one-year visiting research program at the University of Southern California 🇺🇸. Dr. Xu’s expertise lies in nonlinear systems, adaptive and intelligent control, and robotics. 🤖 He has authored over 30 academic papers and holds more than 20 invention patents. His work significantly impacts robotics and intelligent systems, blending theoretical foundations with practical applications in automation and control.

Professional Profile

Scopus

🎓 Education 

Dr. Weimin Xu pursued all his academic qualifications from Northeastern University, China. He began with a Bachelor’s degree in Automation in 1985, where he gained foundational knowledge in electrical and mechanical systems. With a growing interest in system dynamics and process automation, he continued his studies at the same university, earning a Master’s degree in Control Science and Engineering in 1992. Driven by a deep curiosity about system behavior and advanced control theories, he completed his Ph.D. in Control Science and Engineering in 1997. 🧠 His doctoral research laid the groundwork for his current expertise in nonlinear and intelligent control systems. Later, in 2013, Dr. Xu broadened his international academic horizon through a one-year visiting research program at the University of Southern California, where he collaborated with global experts and explored modern advancements in robotics and adaptive control. 🌐

👨‍🏫 Experience 

Dr. Xu began his professional journey in academia shortly after completing his Ph.D. in 1997. His early career involved contributing to control engineering projects and mentoring students at various institutions. Since 2009, he has been serving as a faculty member at Shanghai Maritime University, actively involved in teaching, supervising graduate students, and leading advanced research in control systems. 🏫 His academic responsibilities are complemented by hands-on research in intelligent systems and automation. In 2013, he was a visiting scholar at the University of Southern California, a pivotal experience that allowed him to engage with cutting-edge research and collaborate internationally. Over the years, Dr. Xu has become a recognized expert in the control and automation field, integrating theoretical knowledge with real-world applications in robotics, crane systems, and intelligent automation. ⚙️ His contributions have significantly enhanced the university’s research capabilities in engineering and intelligent control.

🔍 Research Interests 

Dr. Xu’s research explores the dynamic landscape of control theory and intelligent systems. His key focus areas include nonlinear system theory, adaptive control, and sliding mode control—each critical for understanding and controlling complex engineering systems. ⚙️ He is particularly passionate about robot manipulator control, where precision and adaptability are essential. In addition, Dr. Xu’s work delves into bridge crane state detection and intelligent control, reflecting his commitment to real-world industrial applications. 🚢 His research often integrates classical control methodologies with modern AI techniques, creating intelligent, robust, and adaptive control strategies. Dr. Xu continually investigates how automation can enhance operational efficiency and safety in engineering systems. 🤖 His innovative approaches aim to bridge the gap between control theory and practice, ultimately improving the reliability and intelligence of machinery across various sectors.

🏅 Awards 

Throughout his academic career, Dr. Xu has received multiple awards and recognitions that highlight his contributions to control engineering and intelligent systems. 🏆 His work on bridge crane detection and robotic control has earned accolades for both innovation and practical relevance. With more than 20 authorized invention patents, many of which focus on automation and intelligent detection, Dr. Xu’s inventive spirit has been consistently celebrated at national and institutional levels. 🇨🇳 He has also been recognized for excellence in research and teaching at Shanghai Maritime University, where he has played a pivotal role in advancing engineering education. His dedication to integrating cutting-edge research into student learning and real-world applications has made him a valuable mentor and leader. Dr. Xu’s achievements are a testament to his commitment to continuous innovation and the impactful dissemination of knowledge in the engineering community. 📘

📚 Top Noted Publications 

Dr. Xu has published over 30 peer-reviewed academic papers, contributing significantly to nonlinear systems and intelligent control. His research is widely cited, reflecting his influence in the academic community. 📖 Some of his representative publications include:

1. Xu, W., et al. (2021)

Title: Adaptive Sliding Mode Control for Robot Manipulators with Input Nonlinearity
Journal: Robotics and Autonomous Systems
Citations: 45

Summary:
This paper presents an adaptive sliding mode control (ASMC) approach designed specifically for robot manipulators with significant input nonlinearities such as dead zones and input saturation. The authors develop a robust controller that adapts in real time to system uncertainties and unmodeled dynamics while preserving stability and convergence.

Key Contributions:

  • A novel ASMC framework incorporating adaptive laws to handle unknown input nonlinearities.

  • Lyapunov-based stability analysis ensures system convergence.

  • Simulation and experimental results on a 2-DOF manipulator show improved trajectory tracking and robustness compared to traditional SMC.

Impact:
Widely cited for its robustness in dealing with non-ideal actuator behavior in robotics applications.

2. Xu, W., et al. (2020)

Title: Intelligent Control of Bridge Crane Based on Sensor Fusion and Neural Networks
Conference: IEEE Conference on Control and Automation
Citations: 30

Summary:
This work proposes an intelligent control strategy for bridge cranes using a combination of sensor fusion (gyroscopes, vision, encoders) and neural network-based control algorithms. The aim is to reduce swing and improve payload accuracy during transport.

Key Contributions:

  • Development of a sensor fusion algorithm to accurately estimate the payload position and velocity.

  • Neural networks are trained to mimic optimal control behavior under different load conditions.

  • Simulation and real-time experiments confirm the effectiveness in swing suppression and trajectory accuracy.

Impact:
Recognized for advancing automation in industrial lifting systems using AI-based techniques.

3. Xu, W., et al. (2019)

Title: Nonlinear Adaptive Control with Observer for Uncertain Systems
Journal: Wireless Networks
Citations: 28

Summary:
This paper addresses the control of nonlinear uncertain systems using a nonlinear adaptive control scheme combined with an observer design to estimate unmeasurable states. The focus is on wireless-enabled systems with uncertain parameters and delays.

Key Contributions:

  • Design of a state observer for nonlinear systems with partially known dynamics.

  • Use of adaptive control to handle parametric uncertainties and time-varying disturbances.

  • Stability proofs using Barbalat’s Lemma and Lyapunov theory.

Impact:
Cited in research on wireless sensor-actuator networks and embedded control in uncertain environments.

4. Xu, W., et al. (2018)

Title: Intelligent Fault Detection in Industrial Systems using Hybrid Neural Models
Journal: Expert Systems with Applications
Citations: 52

Summary:
This paper proposes a hybrid neural network model for fault detection in industrial systems, combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). It targets early-stage anomaly detection in time-series data from manufacturing sensors.

Key Contributions:

  • A novel hybrid model that captures both spatial features (via CNN) and temporal dynamics (via RNN).

  • A feature fusion strategy for improved diagnostic performance.

  • Evaluation on real-world datasets from manufacturing processes shows high accuracy and low false alarm rates.

Impact:
One of the most cited papers in intelligent maintenance and predictive diagnostics, influencing work on Industry 4.0 and smart manufacturing.

Conclusion

Dr. Weimin Xu is a strong candidate for the Best Researcher Award due to his broad and practical research contributions, notable patent record, and long-standing academic service. His work bridges theoretical advancement and practical application in intelligent control systems, aligning with the priorities of innovation-driven recognition.

Gang Li | Mechanical Engineering | Best Researcher Award

Assoc. Prof. Dr. Gang Li | Mechanical Engineering | Best Researcher Award

Associate professor, Northeast Electric Power University, China

🔬 Assoc. Prof. Dr. Gang Li is a distinguished researcher in mechanical manufacturing and automation at Northeast Electric Power University. He holds a PhD from South China University of Technology and has led numerous projects in metal material processing, mechanical equipment development, and metrological verification. His expertise includes Ti-6Al-4V material processing, intelligent metering systems, and unmanned technology research. He has authored 10+ SCI papers, holds multiple patents, and has contributed to national and provincial research projects. Passionate about innovation and automation, he actively explores advancements in mechanical engineering. ✨🔧📡

 

Publication Profile

Scopus

🎓 Educational Background

Assoc. Prof. Dr. Gang Li has a strong academic foundation in mechanical engineering and automation. He earned his PhD (2013-2017) 🎓 from South China University of Technology, specializing in Mechanical Manufacturing and Automation. Prior to this, he completed a Master’s degree (2010-2013) 🏅 at Changchun University of Science and Technology, focusing on Machinery Manufacturing and Automation. His first Master’s degree (2004-2008) 🏆 was from Inner Mongolia University of Science and Technology, specializing in Mechanical Design, Manufacture, and Automation. His extensive academic training has contributed significantly to his expertise in mechanical innovation and research. 🔧📡

🔬 Project Experience

Assoc. Prof. Dr. Gang Li has contributed to multiple mechanical and automation research projects. His work on Ti-6Al-4V cutting and surface strengthening technology 🏗️ optimized machining parameters and tools for titanium alloy casing. He played a key role in the Guangdong Provincial Energy Metering and Verification Center ⚡, overseeing equipment installation and debugging. His research on intelligent, unmanned metrological verification 🏭 focused on fault detection and automation. As the principal investigator of the intelligent metering turnover cabinet 📟, he developed a system for efficient energy meter management, enhancing automation and operational efficiency. 🔧🚀

🔬 Research Focus

Assoc. Prof. Dr. Gang Li specializes in mechanical engineering 🏭, with a focus on materials processing and surface strengthening technologies. His research explores electropulsing-assisted ultrasonic strengthening ⚡🔊, particularly its impact on fatigue properties of Ti–6Al–4V alloys 🏗️. He also investigates fretting friction characteristics 🔧, optimizing heat-treated alloys for enhanced durability. His contributions in metallurgical and materials science 🏺 are crucial for improving the performance and lifespan of structural components in aerospace ✈️, automotive 🚗, and energy sectors ⚡. With multiple publications and citations, his work advances manufacturing and materials innovation. 🚀

Publication Top Notes

Effect of Electropulsing-Assisted Ultrasonic Strengthening on Fatigue Properties of HIP Ti–6Al–4V Alloy

Study on surface fretting friction properties of heat-treated HIP Ti-6Al-4 V alloy after heating-assisted ultrasonic surface strengthening

BURAK AKIN | Engineering | Best Researcher Award

BURAK AKIN | Engineering | Best Researcher Award

Assist. Prof. Dr BURAK AKIN, YTU, Turkey

Assist. Prof. Dr. Burak Akın is an academician at Yıldız Technical University, specializing in Electrical and Electronics Engineering. He holds a doctorate from Yıldız Technical University (2001-2008) and has extensive research in energy, renewable energy, and engineering technology. He has been an Assistant Professor since 2013, also holding roles such as Deputy Head of the Department and Commission Chair. Dr. Akın advises postgraduate and doctoral students, with research published in SCI journals. His academic contributions extend to organizing national and international scientific events and refereeing for journals. His expertise includes power systems, battery management, and optimization algorithms. ⚡📚🔋

Publication Profile

Scopus

Education & Career

Assist. Prof. Dr. Burak Akın is an accomplished expert in Electrical and Electronics Engineering with a Doctorate from Yıldız Technical University, Turkey. With over two decades of academic experience, he began his career as a research assistant and progressively advanced to his current role as an assistant professor. Dr. Akın is dedicated to research and education in his field, contributing significantly to advancements in Electrical and Electronics Engineering. Currently serving at Yıldız Technical University, he continues to inspire and mentor students while driving forward innovative research. 🔬📚💡🎓

Academic & Administrative Roles

Dr. Akın is a dedicated academic leader at Yıldız Technical University, actively engaged in shaping educational strategies and overseeing key academic initiatives. He holds leadership roles in various university committees, where he influences decision-making processes and contributes to the growth of the institution. Dr. Akın is also deeply involved in supervising multiple postgraduate theses, guiding students through their research journeys. His commitment to academic excellence and leadership is evident in his continuous efforts to enhance the university’s educational framework and support the next generation of scholars. 🎓📚💼👨‍🏫

Non-Academic Experience

Dr. Akın has significantly contributed to various legal proceedings by offering his expert knowledge in electrical engineering and technology. His insights have proven invaluable in legal contexts, showcasing his ability to bridge the gap between technical expertise and legal matters. With a strong background in engineering, Dr. Akın has applied his skills in areas like patent law, intellectual property, and technology-related disputes. His versatility in both technical and legal domains has enhanced his professional reputation, allowing him to be a trusted expert in his field. ⚖️🔌📚💡

Projects

B. Akın has contributed to various projects focused on power electronics and renewable energy systems. Key projects include the development of a safe onboard charging unit for electric vehicle batteries (TÜBİTAK, 2023) and a three-phase power factor correction circuit for charging stations (TÜBİTAK, 2022-2023). He also worked on a compact DC/DC converter (2020-2021), a smart turnstile system (TÜBİTAK, 2018-2019), and solutions for reducing the impact of energy-efficient lamps on the grid (2015-2017). Other notable projects include induction ovens (2011-2013) and power factor correction circuits (2005-2008), emphasizing renewable energy applications 🌍🔋⚡.

Book Chapters

Assist. Prof. Dr. Burak Akın contributed to several important topics in physics in 2015. He authored chapters in the book Fen ve Mühendisler için Fizik (Physics for Science and Engineers), edited by D. Esra Yıldız, Erol Kurt, and H. Hilal Kurt, published by Nobel Yayın Dağıtım. His chapters include Kinetic Theory of Gases (pp. 1-17), Temperature, Heat, and Heat Transfer (pp. 1-17), and The First and Second Laws of Thermodynamics (pp. 1-17). These works have provided valuable insights into fundamental principles of physics for engineering and science students. ⚛️📚🌡️

Research Focus

Assist. Prof. Dr. Burak Akın’s research primarily focuses on optimization techniques for energy systems, particularly in photovoltaic (solar power) applications. His work includes innovative algorithms such as the grey wolf optimization and hybrid particle swarm algorithms for efficient energy management, battery charging, and maximum power point tracking (MPPT). Additionally, he explores feedback control systems and converter designs, aiming to improve energy storage systems and power conversion efficiency. His contributions support sustainable energy solutions, particularly in optimizing the performance of solar and battery systems. 🌞⚡🔋🧑‍💻

Publication Top Notes

A modified multi-stepped constant current based on gray wolf algorithm for photovoltaics applications

An improved constant current step-based grey wolf optimization algorithm for photovoltaic systems

Transformer rail-tapped buck-boost converter design-based feedback controller for battery charging systems

MPPT mechanism based on novel hybrid particle swarm optimization and salp swarm optimization algorithm for battery charging through simulink

A novel hybrid series salp particle Swarm optimization (SSPSO) for standalone battery charging applications

Improved salp swarm algorithm based on particle swarm optimization for maximum power point tracking of optimal photovoltaic systems

DESIGN AND ANALYSIS OF A FLYBACK CONVERTER WITH IMPROVED SNUBBER CELLS

Kiran Bhaskar | Engineering | Best Researcher Award

Dr. Kiran Bhaskar | Engineering | Best Researcher Award

Controls Engineer, Wabtec Corporation, United States

Dr. Kiran Bhaskar is an accomplished researcher and engineer specializing in battery systems and electrification. Holding a Ph.D. and M.S. in Mechanical Engineering from Pennsylvania State University (GPA 3.98/4), he has contributed significantly to the modeling, fault detection, and optimization of lithium-ion battery systems. Dr. Bhaskar has co-authored impactful publications in Applied Energy and IEEE Transactions on Transportation Electrification. As a Controls Engineer at Wabtec Corporation, he focuses on energy management for hybrid locomotives. With extensive technical expertise in MATLAB, Simulink, and Python, he excels in developing innovative solutions for sustainable energy and transportation systems. 🚆🔋

Publication Profile

Orcid

Google Scholar

🎓 Academic Journey

Dr. Kiran Bhaskar has a distinguished academic background in mechanical engineering. He pursued his PhD and MS at The Pennsylvania State University, University Park, PA (2019–2024), achieving an impressive GPA of 3.98/4. Earlier, he graduated from the Indian Institute of Technology (IIT) Madras with a B.Tech (Hons) in Mechanical Engineering and a Minor in Operations Research (2013–2018), along with an M.Tech in Thermal Engineering, earning a GPA of 8.7/10. Additionally, he broadened his horizons through a semester abroad at Czech Technical University, Prague (2017). His academic excellence reflects his dedication to engineering research and innovation. 📚🌟

 

🔬 Academic Research Experience

Dr. Kiran Bhaskar has extensive research experience in battery systems and energy optimization. At Pennsylvania State University, he developed models for parallel cell degradation, proposing a novel capacity-resistance matching strategy to enhance battery pack performance and minimize aging. His work includes fault detection through Lyapunov-based observers and real-time diagnosis schemes for internal short circuits. He also pioneered data-driven sensor reconstruction techniques, anomaly detection algorithms using PCA, and coupled SoC and SoH estimation for Li-ion batteries. Additionally, he optimized energy management in hybrid-electric locomotives and studied emissions reduction through injection parameter optimization during his tenure at IIT Madras. ⚡🔋📊

 

🌟 Industry Research Experience

Dr. Kiran Bhaskar has diverse industrial experience in energy management and automotive innovation. As a Controls Engineer at Wabtec Corporation, he developed advanced algorithms for battery pack health monitoring, including SoC, SoH, and anomaly detection techniques. During a summer internship there, he created Simulink models for fault detection and sensor signal reconstruction. At Rivigo Logistics, he optimized market truck utilization, reducing revenue leakage by 5%. Interning at TVS Motor Company, he automated SI engine calibration for BMW engines, while at Ashok Leyland, he modeled airflow estimation in SI engines using Simulink. His work spans energy, logistics, and automotive sectors. 🚂🔋🚛

 

🏆 Awards and Honors

Dr. Kiran Bhaskar has received numerous accolades for his academic excellence and research contributions. He was honored with the prestigious Thomas and June Beaver Award (2024) for outstanding industrially-sponsored research at Pennsylvania State University and recognized as an ASME Dynamic Systems and Control Division Rising Star at the 2023 MECC. Twice a finalist for the Energy Systems Best Paper Award (2024), he also secured runner-up positions in poster sessions at IndustryXchange (2022, 2023). Additionally, he earned the Prime Minister’s Scholarship for academic excellence and ranked 1666th nationally (99.86 percentile) in the IIT-JEE Advanced Examination. 🌟📜🎖️

 

🔋 Research Focus

Dr. Kiran Bhaskar specializes in battery technology and energy systems, with a focus on lithium-ion batteries. His research includes thermal anomaly detection 🔥, state of charge and health estimation ⚡, and short-circuit detection in battery packs. Dr. Bhaskar has developed innovative methods for fault detection 🛠️, sensor signal reconstruction 🔍, and diagnosing heterogeneity-induced losses in parallel-connected cells. He also explores advanced techniques for anomaly diagnosis 🚨 and health monitoring of battery systems. His contributions enhance battery efficiency and safety, driving progress in electrification and sustainable energy solutions. 🌱🔧📈

 

Publication Top Notes 📚

  • Data-driven thermal anomaly detection in large battery packs 🔥 – Cited by 21 (2023)
  • State of Charge and State of Health estimation in large lithium-ion battery packs ⚡ – Cited by 4 (2023)
  • Detecting synthetic anomalies using median-based residuals in lithium-ion cell groups 🔍 – Cited by 4 (2022)
  • Detection of engine knock using speed oscillations in a single-cylinder spark-ignition engine 🚗 – Cited by 3 (2019)
  • Heterogeneity-induced power and capacity loss in parallel-connected cells 📉  (2024)
  • Short Circuit Estimation in Lithium-Ion Batteries Using Moving Horizon Estimation 🔧(2024)
  • Post-Damage Short Circuit Detection in Lithium-ion Batteries 🚨 (2024)
  • Faulty sensor signal reconstruction in Li-ion battery packs 🛠️ (2024)
  • Anomaly diagnosis and health monitoring of lithium-ion battery packs 🩺 (2024)

 

 

 

HARPREET AASI | Engineering | Women Researcher Award

HARPREET AASI | Engineering | Women Researcher Award

Dr HARPREET AASI, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, India

Dr. Harpreet Aasi is a Postdoctoral Fellow in Thermal Engineering at IIT Bombay (2024–present). He holds a Ph.D. in Thermal Engineering from IIT Roorkee (2014–2020), an M.Tech. from NIT Raipur, and a B.E. in Mechanical Engineering. His expertise lies in heat transfer enhancement, particularly using ultrasound in electronic cooling systems, involving both numerical (ANSYS Fluent) and experimental methods. A recipient of multiple awards, including the Silver Medal at NIT Raipur, Dr. Aasi has contributed to prestigious projects sponsored by CSIR and DST. He is also an active reviewer for high-impact journals and has published extensively in heat exchanger optimization. 📚💡

Publication Profile

Scopus

Education

Dr. Harpreet Aasi is a distinguished researcher specializing in thermal engineering. Currently, he is pursuing a Postdoctoral Fellowship at the Indian Institute of Technology Bombay (March 2024 – present). He earned his Ph.D. with honors in Thermal Engineering from IIT Roorkee (2014-2020) and completed an M.Tech. in Thermal Engineering with an impressive CPI of 8.96/10 at NIT Raipur (2011-2013). His academic journey began with a B.E. in Mechanical Engineering from New Government Engineering College Raipur, achieving a stellar CPI of 8.99/10 (2006-2010). Dr. Aasi’s dedication to academics is reflected in his strong foundations, scoring 76% in Intermediate (2005-2006) and 85% in Matriculation (2003-2004). 📚✨

Experience

Dr. Aasi conducted numerical (Ansys Fluent) and experimental studies (non-intrusive optical techniques) on single-phase and two-phase flow boiling processes for electronic cooling systems. This research explored the effect of ultrasound parameters, demonstrating its potential for enhancing heat transfer. Ph.D. Research: Investigations on Three-fluid Compact Plate-fin Heat Exchanger 🌡️📊 Dr. Aasi performed extensive experimental and numerical investigations (MATLAB coding) under transient and steady states, addressing flow maldistribution, inlet temperature non-uniformity, and ambient heat interaction. Innovative modeling optimized geometrical attributes for diverse plate-fin types. M.Sc. Research: Parametric Study of Orthotropic Annular Fin with Contact Resistance 🌀🛠️ Dr. Aasi developed a 2D dimensionless steady-state model to assess the thermal performance of orthotropic annular fins, focusing on polymer matrix composites with axis-dependent properties.

Award and Scholarships

Dr. Harpreet Aasi has an impressive academic record, including a Silver Medal at the National Institute of Technology (NIT) Raipur in 2012-2013 🥈. He received the Academic Excellence Award at NIT Raipur in 2011-2012 🎓. Ranked 10th in the Chhattisgarh Swami Vivekanand Technical University state toppers list, he was 1st in New Government Engineering College Raipur in 2010 🏆. Dr. Aasi secured prestigious fellowships, including the Institute Postdoctoral Fellowship at IIT Bombay in 2024 🧑‍🔬 and MHRD scholarships for his Ph.D. (2014-2019) and M.Tech. (2011-2013) 📚. Additionally, he earned state-level merit scholarships during his B.E. studies (2007-2010) 🏅.

Project contribution

Dr. Harpreet Aasi has conducted groundbreaking research on optimizing the performance of three-fluid heat exchangers through both numerical and experimental investigations. Sponsored by CSIR, this research aims to improve heat transfer efficiency and system performance. Additionally, his study on the effect of temperature and flow nonuniformities on three-fluid compact heat exchangers, sponsored by DST, delves into understanding how such factors influence overall efficiency. These contributions are crucial in advancing thermal management systems, with potential applications in various industries, from energy to manufacturing. 🌡️🔧

Research focus

Dr. Harpreet Aasi’s research primarily focuses on the thermo-hydraulic performance and optimization of multi-fluid heat exchangers, particularly three-fluid systems. His work investigates the effects of flow non-uniformity, ambient heat ingression, and temperature nonuniformity on the efficiency and dynamic behavior of cross-flow and plate-fin heat exchangers. Using advanced techniques like Artificial Neural Networks (ANN) and second law analysis, he aims to improve heat exchanger designs for enhanced thermal management in various engineering applications. His research is crucial for energy efficiency and thermal optimization in industries such as cryogenics, power generation, and heat recovery. 🔥🔧⚙️💡

Publication top notes

Investigation on cross-flow three-fluid compact heat exchanger under flow non-uniformity: an experimental study with ANN prediction

The impact of ambient heat ingression on performance of cryogenic three-fluid cross-flow compact heat exchanger

Experimental investigation and ANN modelling on thermo-hydraulic efficacy of cross-flow three-fluid plate-fin heat exchanger

Detailed design optimization of three-fluid parallel-flow plate-fin heat exchanger using second law analysis

Influence of flow non-uniformity on the dynamic behaviour of three-fluid cross-flow compact heat exchanger

A novel equivalence approximate model for second law based optimization of three-fluid cross-flow plate-fin heat exchanger using genetic algorithm

 

Mohammad Jafar Hemmati | Engineering Award | Best Researcher Award

Assist. Prof. Dr. Mohammad Jafar Hemmati | Engineering Award | Best Researcher Award

Assist. Prof. Dr. Mohammad Jafar Hemmati, Sirjan University of Technology, Iran

Assist. Prof. Dr. Mohammad Jafar Hemmati, based in Kerman, Iran, is an accomplished electrical engineer specializing in low-voltage and low-noise oscillator designs. He holds a PhD in Electrical Engineering from Shahid Bahonar University of Kerman (2019), focusing on Colpitts quadrature oscillators in CMOS technology. He also earned an MSc from Ferdowsi University of Mashhad (2010) and a BSc from Shahid Chamran University of Kerman. Currently, he lectures at Sirjan University of Technology, where he teaches courses on CMOS Integrated Circuits and Digital Logic Circuits. His research interests include VCOs, frequency dividers, and low-noise amplifiers. 📡👨‍🏫📘

 

Publication Profile

Google Scholar

Education 🎓

Dr. Mohammad Jafar Hemmati completed his Ph.D. in Electrical Engineering at Shahid Bahonar University of Kerman (2014-2019). His thesis focused on designing a low-voltage Colpitts quadrature oscillator using the gm-enhanced technique in CMOS technology. He also holds an M.Sc. in Electrical Engineering from Ferdowsi University of Mashhad (2008-2010) and a B.Sc. from Shahid Chamran University of Kerman (2003-2007). His academic background strongly supports his expertise in low-power and low-noise circuit design.

Work Experience 💼

Dr. Hemmati is currently a lecturer at Sirjan University of Technology, where he teaches CMOS Integrated Circuits, Digital Logic Circuits, and more. His previous roles include being the head of the electrical department at Islamic Azad University, Firouzabad branch, and a design engineer at Kerman Tablo Electrical and Electronics Engineering Corporation. His broad teaching experience and industry involvement enrich his contributions to research and academia.

Research Interests 🔬

His research focuses on designing low-voltage and low-noise voltage-controlled oscillators (VCOs), injection-locked frequency dividers, low-noise amplifiers, and active mixers. These areas are critical for advancing modern communication and signal processing systems, reflecting his strong alignment with cutting-edge engineering challenges.

Conclusion 🌟

Dr. Mohammad Jafar Hemmati’s solid educational foundation, extensive research, and professional experience make him a highly suitable candidate for the Research for Best Researcher Award. His innovative work on low-power, low-noise VCOs and oscillators has significantly contributed to the advancement of electrical engineering, establishing him as a leader in his field.

 

Publication Top Notes

  • 📚 A CMOS quadrature VCO with optimized Colpitts topology for low-voltage applications – 9 citations, 2018
  • 📚 Design optimization of the complementary voltage controlled oscillator using a multi-objective gravitational search algorithm – 8 citations, 2023
  • 📚 A low-voltage swing-enhanced Colpitts CMOS LC-QVCO based on first-harmonics coupling – 7 citations, 2019
  • 📚 Ultra‐low‐phase‐noise CMOS LC quadrature voltage controlled oscillator with Colpitts topology – 7 citations, 2014
  • 📚 A second-harmonic LC-quadrature voltage controlled oscillator with direct connection of MOSFETs’ substrate – 6 citations, 2012
  • 📚 Analysis and review of main characteristics of Colpitts oscillators – 5 citations, 2021
  • 📚 CMOS second-harmonic quadrature voltage controlled oscillator using substrate for coupling – 5 citations, 2011
  • 📚 Novel six‐phase ring voltage controlled oscillator with wide frequency tuning range – 4 citations, 2024
  • 📚 A New Low-Power and High-Linearity CMOS Bulk-Injection Mixer in Technology – 4 citations, 2018
  • 📚 Low power differential Colpitts injection-locked frequency dividers using 0.18 μm CMOS technology – 3 citations, 2018

 

Xiaomin Zhang | Structural Wind Engineering | Best Researcher Award

Ms. Xiaomin Zhang | Structural Wind Engineering | Best Researcher Award

Ms. Xiaomin Zhang, Civil Aviation Flight University of China

Xiaomin Zhang is a third-year postgraduate student at the Civil Aviation Flight University of China, specializing in structural wind engineering. She has published three papers, including one as the first author in Physics of Fluids (Q1, IF=4.6) and two as a second author in Structures (Q2, IF=3.8) and Advances in Civil Engineering (Q3). Her research focuses on structural wind resistance, including wind pressure distribution and fluid mechanics. With hands-on experience in wind tunnel testing and data analysis, Xiaomin is dedicated to advancing knowledge in her field. She is committed to innovative solutions in engineering.

 

Publication Profile

Orcid

Academic and Professional Background

Ms. Zhang has made significant strides in her academic career. She has published three papers in reputable journals, including one as the first author in Physics of Fluids (Q1, IF=4.6) and two as a second author in Structures (Q2, IF=3.8) and Advances in Civil Engineering (Q3). This impressive publication record showcases her ability to contribute meaningfully to her discipline.

Research and Innovations

Ms. Zhang’s research focuses on structural wind resistance, particularly concerning wind pressure distribution on various structures. Her ongoing projects involve investigating the impacts of environmental factors on structural integrity and developing innovative solutions using fluid mechanics and neural network predictions. Although her publications are recent and have yet to accumulate citations, the quality of her work is evident.

Contributions

Her contributions to the field are noteworthy. Ms. Zhang has conducted comprehensive research on the glass curtain walls of airport terminals, accounting for different environmental conditions. Additionally, she has taken the initiative to design wind tunnel test conditions and analyze experimental data. Her involvement in drafting and revising papers further emphasizes her strong research capabilities.

Conclusion

Xiaomin Zhang is a strong candidate for the Best Researcher Award. Her work not only contributes to the scientific community but also has the potential for real-world applications in enhancing structural safety and resilience.

Publication Top Notes  

Milad Heidari | Engineering | Best Researcher Award

Milad Heidari | Engineering | Best Researcher Award

Dr Milad Heidari, Global college of engineering and technology, Oman

Dr. Milad Heidari appears to be a strong candidate for the Best Researcher Award based on his diverse academic background, professional experience, and significant contributions to mechanical engineering research. Here’s an evaluation:

Publication profile

google scholar

Educational Background and Credentials

Dr. Heidari has an impressive academic portfolio, with advanced degrees in Mechanical Engineering from prestigious institutions like Universiti Sains Malaysia and Universiti Teknologi Malaysia. His fellowships and professional certifications, such as being a Chartered Engineer with IMechE and a Fellow of the Higher Education Academy (FHEA), highlight his continued pursuit of excellence in his field.

Research Contributions

Dr. Heidari has contributed significantly to the study of nanofluids, heat transfer, and renewable energy systems. His publications, such as in International Communications in Heat and Mass Transfer and Physics of Fluids, reflect cutting-edge research in mechanical and energy systems. Key publications, like studies on graphene-based nanofluids and technological advancements in solar energy, show a focus on innovative and sustainable solutions, aligning with modern engineering challenges.

Academic Leadership and Teaching

Dr. Heidari serves as a program leader and quality assurance officer at the Global College of Engineering and Technology in Oman, demonstrating his leadership in academic administration. He has also supervised numerous postgraduate and undergraduate projects, further showcasing his mentorship abilities.

Industry Experience

His experience as a technical manager in the Persian Gulf Lo Lo Company demonstrates practical engineering expertise, particularly in inspection management and quality control.

Conclusion

Dr. Heidari’s combination of academic achievement, research impact, leadership roles, and professional certifications makes him a highly suitable candidate for the Best Researcher Award. His focus on mechanical engineering advancements and sustainability aligns with the award’s objectives of recognizing impactful and forward-thinking research.

Publication top notes

The thermophysical properties and the stability of nanofluids containing carboxyl-functionalized graphene nano-platelets and multi-walled carbon nanotubes

Study of pressure-swirl atomizer with spiral path at design point and outside of design point

Natural convection from the outside surface of an inclined cylinder in pure liquids at low flux

Study of spiral path angle in pressure-swirl atomizer with spiral path

Comparison between Nucleate Pool Boiling Heat Transfer of Graphene Nanoplatelet-and Carbon Nanotube-Based Aqueous Nanofluids

Technological advancements in sustainable and renewable solar energy systems

Design and Simulation of Radial Flow Turbine Impeller and Investigation Thermodynamic Properties of Flow in LE and TE.

 

 

Mohannad Mhanna | Engineering | Best Researcher Award

Harish Selvam | Engineering | Best Researcher Award

Dr. Harish Selvam | Engineering | Best Researcher Award

Post-doctoral researcher, Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Germany

Harish Selvam is a Scientific Staff member at the Institute of Hydraulic Engineering and Water Resources Management (IWW) at RWTH Aachen University, Germany. With over 8 years of expertise in Hydraulics and Coastal Engineering, Harish’s research focuses on physical and numerical modeling, particularly in violent tsunami-structure interactions. His dual MS and PhD in Ocean Engineering were awarded with distinction from RWTH Aachen University and Indian Institute of Technology Madras. 🌊🏛️

Publication Profile

Strengths for the Award:

  1. Academic Excellence: Harish Selvam’s educational background is impressive, with a dual degree (MS & PhD) in Ocean Engineering from RWTH Aachen University and IIT Madras, completed with distinction. His B.E. in Civil Engineering also showcases strong academic performance.
  2. Research Contributions: His PhD thesis on violent tsunami-structure interaction is a significant contribution to the field of Hydraulics and Coastal Engineering. He has published numerous papers in high-impact journals such as Coastal Engineering, Water, Applied Ocean Research, and Ocean Engineering, indicating a strong research output.
  3. Awards and Recognitions: Harish has received prestigious awards, including the Prof. Vallam Sundar best PhD thesis in Ocean Engineering from IIT Madras and the ISH best PhD thesis award in Hydraulics, water resources, and coastal engineering.
  4. Professional Experience: With eight years of experience in Hydraulics and Coastal Engineering, Harish has held significant positions, including Junior Research Group Coastal Engineering Leader and Scientific Staff at RWTH Aachen University. His involvement in major projects and contributions to CFD software development demonstrate his applied research skills.
  5. Technical Skills: Proficiency in programming languages (MATLAB, C++, FORTRAN) and technical software (AutoCAD, Stadd Pro, FreeCAD, OpenFOAM, DualSPHysics, Ansys) highlights his capability in numerical and physical modeling.
  6. Supervision and Mentorship: Harish has supervised multiple Master’s and Bachelor’s theses, indicating his leadership and mentorship abilities. His guidance on projects related to tsunami-like wave impacts and hydraulic engineering showcases his expertise in guiding young researchers.
  7. International Exposure: Harish’s involvement in international projects and conferences, along with scholarships from DAAD and UGC, underscores his global perspective and collaboration.

Areas for Improvement:

  1. Language Proficiency: While Harish has basic proficiency in German (A2.1 level), improving his language skills could enhance his integration and communication within the international research community in Germany and beyond.
  2. Expanded Research Impact: While his research is strong, broadening the impact through more interdisciplinary collaborations and applications beyond tsunami-structure interaction could enhance his profile further.
  3. Industry Collaboration: Increasing collaborations with industry partners could translate his research findings into practical solutions and innovations, thereby enhancing the societal impact of his work.

Conclusion:

Harish Selvam is a highly suitable candidate for the Best Researcher Award. His robust academic background, significant research contributions, professional experience, and technical skills make him a standout researcher in the field of Hydraulics and Coastal Engineering. While there are areas for improvement, such as language proficiency and expanding the impact of his research, his overall profile is highly commendable and deserving of recognition.

 

Education

Harish completed his dual degree MS & PhD in Ocean Engineering from RWTH Aachen University and Indian Institute of Technology Madras in July 2023, graduating with a summa cum laude distinction and a 9.74 CGPA. He holds a B.E. in Civil Engineering from Rajalakshmi Engineering College, Chennai, with an 8.74 CGPA. He also achieved top grades in his Higher Secondary and Matriculation courses. 🎓📚

Experience

Currently, Harish serves as a Junior Research Group Coastal Engineering Leader at IWW, RWTH Aachen University. His previous roles include Scientific Staff at IWW since October 2021 and Project Associate at IIT Madras. He has worked extensively with OpenFOAM and other CFD software, and has been involved in notable projects like the “Impact of waterborne debris on near shore structures” and “Flood-induced building damages after 2021 German floods.” 🏗️🌍

Research Focus

Harish’s research primarily investigates tsunami-like flow interactions with coastal structures. His PhD thesis delves into tsunami-induced forces on shorefront structures, leveraging both physical experiments and numerical simulations to enhance understanding and design improvements in coastal engineering. His current work includes numerical simulations of tsunami impacts and flow interactions with various structural models. 🌪️🔬

Awards

Prof. Vallam Sundar Best PhD Thesis Award (2023), Indian Society of Hydraulics (ISH) Best PhD Thesis Award (2023), GATE Qualification (2016), University Rank Holder in B.E. among colleges affiliated with Anna University, Chennai. 🏆🎖️

Publications

  1. Harish, S., Sriram, V., Schüttrumpf, H., & Sannasiraj, S. A. (2021). Tsunami-like flow induced force on the structure: Prediction formulae for the horizontal force in quasi-steady flow phase. Coastal Engineering, 168, 103938.
  2. Harish, S., Sriram, V., Schüttrumpf, H., & Sannasiraj, S. A. (2022). Tsunami-like flow induced forces on the structure: Dependence of the hydrodynamic force coefficients on Froude number and flow channel width. Coastal Engineering, 172, 104078.
  3. Harish, S., Sriram, V., Schüttrumpf, H., & Sannasiraj, S. A. (2022). Tsunami-like Flow-Induced Forces on the Landward Structure behind a Vertical Seawall with and without Recurve Using OpenFOAM. Water, 14(13), 1986.
  4. Harish, S., Sriram, V., Schüttrumpf, H., & Sannasiraj, S. A. (2022). Flow-structure interference effects with the surrounding structure in the choked quasi-steady condition of tsunami: Comparison with traditional obstruction approach. Applied Ocean Research, 126, 103255.
  5. Harish, S., Sriram, V., Schüttrumpf, H., & Sannasiraj, S. A. (2024). Tsunami-like flow induced forces on the building with openings and orientation in the quasi-steady flow phase. Ocean Engineering, 301, 117337.