Saeed Zolfaghari Moghaddam | Engineering | Best Researcher Award

Saeed Zolfaghari Moghaddam | Engineering | Best Researcher Award

Assoc. Prof. Dr Saeed Zolfaghari Moghaddam, Urmia University of Technology, Iran

Dr. Saeed Zolfaghari Moghaddam is an esteemed academic in Electrical Engineering, specializing in power systems planning, renewable energy, and power market dynamics. 📚⚡ He earned his PhD from Amirkabir University, MSc from Tehran University, and BSc from Iran University of Science and Technology. His research includes advanced methods in smart grids, electric vehicle charging, and microgrid stability. 🔋🌍 Dr. Moghaddam has authored numerous high-impact journal articles and led industrial projects in power system automation and electromagnetic compatibility. A dedicated educator, he teaches courses in electrical machines, smart grids, and power system planning. 🎓✨

Publication Profile

google scholar

Educational Background

Assoc. Prof. Dr. Saeed Zolfaghari Moghaddam is a distinguished academic with expertise in electrical engineering. He earned his PhD in Power Engineering from Amirkabir University of Technology, Tehran, Iran 🇮🇷. Prior to this, he completed his MSc in Power Engineering from the University of Tehran and his BSc in Electronics Engineering at the Iran University of Science and Technology, Tehran. Dr. Moghaddam has made significant contributions to the field of power systems and electronics, leveraging his academic background to advance research and innovation in electrical engineering. ⚡📚

Research Interests

Assoc. Prof. Dr. Saeed Zolfaghari Dr. Moghaddam specializes in renewable energy, power systems planning, and reliability. His research focuses on optimizing power markets, ensuring sustainable and reliable electricity distribution. With expertise in electrical apparatus design and industrial automation, Dr. Zolfaghari also works on advanced system calculations, including load flow and short-circuit analysis. His contributions to the technical side of power systems play a vital role in improving efficiency and sustainability within the energy sector. 🌍💡🔧

Teaching Contributions 

Assoc. Prof. Dr. Saeed Zolfaghari is a distinguished academic in electrical engineering, having taught a wide array of undergraduate and graduate courses. His expertise spans subjects such as Electrical Machines, Power Systems Analysis, Smart Grid Control, and Engineering Mathematics. With a strong commitment to education, he plays a vital role in shaping the next generation of engineers and researchers. His passion for teaching and advancing the field highlights his dedication to nurturing students’ skills and fostering a deep understanding of complex engineering concepts. Dr. Zolfaghari’s influence continues to inspire both students and colleagues.

Industrial Projects 

Assoc. Prof. Dr. Saeed Zolfaghari is a distinguished researcher with significant contributions to industrial projects. His work spans various fields, including grounding in military systems, DG-connected substation automation, and optimizing Combined Heat and Power (CHP) and Photovoltaic (PV) capacities. Dr. Zolfaghari’s expertise lies in applying cutting-edge research to address complex engineering challenges, delivering practical solutions with real-world impact. His achievements highlight his role in shaping innovative solutions within the engineering and energy sectors. Through these projects, Dr. Zolfaghari continues to bridge the gap between academic research and industrial applications. 💡🔧🌱

Research Focus

Assoc. Prof. Dr. Saeed Zolfaghari Moghaddam’s research primarily focuses on energy systems, optimization techniques, and power networks, particularly in the context of renewable energy integration and grid planning. His work includes stochastic and robust optimization, wind energy integration, transmission and distribution expansion planning, and game theory applications in electrical networks. Dr. Moghaddam’s expertise also extends to heat transfer enhancement in distribution transformers and multi-stage stochastic planning under uncertainties. His contributions have significant implications for energy efficiency and sustainable power systems. 🌍⚡🔋📊

Publication Top Notes

Network-constrained optimal bidding strategy of a plug-in electric vehicle aggregator: A stochastic/robust game theoretic approach

Generation and transmission expansion planning with high penetration of wind farms considering spatial distribution of wind speed

Bilevel transmission expansion planning using second-order cone programming considering wind investment

A new method to adequate assessment of wind farms’ power output

Multi-stage stochastic transmission expansion planning under load uncertainty using benders decomposition

Coordinated scheme for expansion planning of distribution networks: A bilevel game approach

Heat transfer enhancement in distribution transformers using TiO2 nanoparticles

Udhayasankar R | Engineering | Best Faculty Award

Udhayasankar R | Engineering | Best Faculty Award

Dr Udhayasankar R, Government, India

Dr. R. Udhayasankar, a distinguished scholar in biocomposites and thermal engineering, completed his Ph.D. (2019), PG (2011), and UG (2006) from Annamalai University. His academic journey began with a diploma in Mechanical Engineering (1999) from Muthiah Polytechnic College. Dr. Udhayasankar has authored numerous international publications on coconut shell-reinforced composites and their thermal, mechanical, and morphological properties. He has guided 8 PG and 15 UG projects and serves as the Exam Cell Coordinator at Annamalai University. A life member of ISTE, he has participated in various workshops and FDPs, contributing to green composite development and sustainable engineering. 🌍📘

Publication Profile

google scholar

Educational Qualifications

Dr. Udhayasankar R has a distinguished academic background rooted in mechanical engineering and advanced studies. He earned his Diploma in Mechanical Engineering from Muthiah Polytechnic College, Chennai, in 1999. Pursuing higher education at Annamalai University, he completed his undergraduate degree in 2006 and specialized in his postgraduate studies in 2011. Dr. Udhayasankar crowned his academic achievements with a Ph.D. from Annamalai University in 2019. His dedication to education and expertise in engineering highlights his continuous pursuit of excellence in his field. 📚✨

Professional Activities 

Dr. Udhayasankar R has made significant contributions to academia, particularly as the Exam Cell Coordinator, where his organizational expertise ensures smooth academic processes. Over the years, he has demonstrated unwavering commitment to mentoring future engineers by supervising numerous postgraduate and undergraduate projects, guiding a total of 23 batches to success. His hands-on approach and dedication to advancing knowledge have left a lasting impact on his students, shaping them into skilled professionals ready to excel in their fields. Dr. Udhayasankar’s efforts reflect his passion for education and his role as a beacon of inspiration in the academic community. 📚🔧

Development and Outreach 

Dr. Udhayasankar R is a passionate educator and researcher who actively participates in workshops, seminars, and Faculty Development Programs (FDPs) on diverse topics, including industrial automation and material properties. His expertise shines in guest lectures, such as his session at Government Engineering College, Coimbatore, where he explored the applications of composite materials in sports equipment. 🏗️🎾 Dr. Udhayasankar’s ability to connect theoretical knowledge with practical applications inspires students and professionals alike. Through his engagements, he fosters innovation and bridges the gap between academia and industry, contributing significantly to the advancement of engineering and technology. 🚀📚

Memberships and Leadership 

Dr. Udhayasankar R, a Life Member of the Indian Society for Technical Education (ISTE), exemplifies dedication to professional excellence and a passion for continuous learning. His affiliation with ISTE highlights his commitment to advancing technical education and staying at the forefront of innovation. With a steadfast approach to professional development, Dr. Udhayasankar actively engages in knowledge-sharing and collaborative opportunities. His journey reflects a deep enthusiasm for growth, both as an educator and a learner, inspiring others in the academic and technical community to pursue excellence. 🌟🔬

Research Focus

Dr. Udhayasankar R specializes in biocomposites, fiber-reinforced materials, and sustainable polymer composites. His research focuses on utilizing natural fibers like banana, coconut shell, sisal, and bagasse for creating environmentally friendly materials. Key areas include mechanical and thermal characterization, morphological analysis, and the effect of chemical treatments like NaOH on composite properties. His innovative work explores green composites using renewable resources like cardanol resin, advancing sustainability in materials science. His contributions are impactful in eco-friendly materials development, tribology, and engineering applications. 🌿🛠️🌍

Publication Top notes

Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber

Study on Mechanical, Thermal and Morphological Properties of Banana Fiber‑Reinforced Epoxy Composites

Study on mechanical and morphological properties of sisal/banana/ coir fber‑reinforced hybrid polymer composites

MECHANICAL AND THERMAL CHARACTERIZATION OF BAGASSE FIBRE / COCONUT SHELL PARTICLE HYB R ID BIOCOMPOSITES REINFORCED WITH CARDANOL RESIN

Coconut shell particles reinforced cardanol–formaldehyde resole resin biocomposites: effect of treatment on thermal properties

Comparative mechanical, thermal properties and morphological study of untreated and NaOH-treated coconut shell-reinforced cardanol environmental friendly green composites

Preparation and properties of cashew nut shell liquid-based composite reinforced by coconut shell particles

Junshu Zhang | Engineering | Best Researcher Award

Dr. Junshu Zhang | Engineering | Best Researcher Award

Dr. Junshu Zhang, Huazhong University of Science and Technology, China

Dr. Junshu Zhang specializes in structural health monitoring and flexible electronics. His research focuses on improving sensor systems, including recognizing bolt loosening and developing mechanical models for flexible sensors. He has contributed to strain transfer models that predict sensor properties and eliminate environmental factors. With 7 ongoing research projects, 3 patents, and 4 published journal articles, Dr. Zhang is a key innovator in his field. He holds professional membership with the Chinese Society for Vibration Engineering. 🌐

Publication Profile

Scopus

Academic and Professional Background

Dr. Junshu Zhang is a prominent researcher specializing in structural health monitoring and flexible electronics. His work focuses on advancing sensor technologies, particularly in the recognition of bolt loosening and the development of mechanical models for flexible sensors. By establishing strain transfer models, Dr. Zhang aims to predict sensor properties and eliminate the influence of environmental and material factors. With 7 ongoing research projects, 3 patents, and several published journal articles, he is making significant contributions to the field. He is a member of the Chinese Society for Vibration Engineering. 🌐

 

Research Focus 🧑‍🔬

Dr. Junshu Zhang’s research primarily focuses on structural health monitoring and flexible electronics, with a strong emphasis on developing innovative sensor technologies. His work includes bolt preload impact modulation, improving the strain transfer model for flexible sensors, and enhancing measurement calibration for piezoresistive sensors. He has contributed to the design of graphene nanoplatelets-based strain sensors and non-uniform shear stress models to improve sensor accuracy. These efforts aim to optimize sensor performance in structural monitoring systems and flexible electronics. Dr. Zhang’s contributions are central to the advancement of sensor mechanics and sensor applications. 📊📐

 

Publication Top Notes

  • Cointegration-based impact modulation for bolt preload under the influence of percussion force (2024) 🔧
  • Measurement Calibration of Flexible Piezoresistive Sensors Based on Strain Transfer Model Accounting for Coating Effect (2024) 📏
  • Graphene Nanoplatelets/Polydimethylsiloxane Flexible Strain Sensor with Improved Sandwich Structure (2024) 🛠️ – Cited by 2
  • Improved strain transfer model for flexible sensors based on non-uniform distribution of shear stress in each layer (2024) 📐 – Cited by 2

Mohammad Baraheni | Mechanical Engineering | Best Researcher Award

Assist. Prof. Dr. Mohammad Baraheni | Mechanical Engineering | Best Researcher Award

Assist. Prof. Dr. Mohammad Baraheni, Arak University of Technology, Iran

Assist. Prof. Dr. Mohammad Baraheni 👨‍🏫 is an Assistant Professor at Arak University of Technology, specializing in Mechanical Engineering, particularly in Production & Manufacturing. He holds a PhD from the University of Kashan, focusing on rotary ultrasonic machining. His research interests include ultrasonic machining, additive manufacturing, artificial intelligence in manufacturing, and advanced ceramics. Dr. Baraheni has published extensively in international journals and received accolades such as the Excellent Paper Award at ISAAT 2023. He has teaching experience in subjects like CNC and advanced machining. His professional background also includes roles in industry and design engineering. 📚🔧🌍

Education

Assist. Prof. Dr. Mohammad Baraheni completed his Post-Doctoral Degree at the University of Tabriz (2019-2022), specializing in Mechanical Engineering, with a focus on Ultrasonic Machining of Additive Manufactured Materials. He also pursued a Sabbatical Fellowship at Hochschule Furtwangen University in Germany (2017-2018), where he developed an expert system using Artificial Intelligence. Dr. Baraheni holds a PhD in Mechanical Engineering from University of Kashan (2014-2020), focusing on Rotary Ultrasonic Machining of Si3N4. His earlier academic journey includes an M.Sc. and B.Sc. from the University of Tabriz. 🏫🔧🧑‍🎓

 

Professional Experience

Assist. Prof. Dr. Mohammad Baraheni has accumulated diverse experience in both academia and industry. Since 2020, he has been serving as an Assistant Professor at Arak University of Technology. Previously, he worked as an Engineer at Tractorsazi Company (2018-2020) and a Research Assistant at Furtwangen Hochschule in Germany (2017-2018). He also gained valuable experience as a Design Engineer at Jahan Saderat Machine (2016-2017) and a Sales Engineer at Pumpiran (2012-2014). Additionally, Dr. Baraheni has worked independently, designing industrial molds and machines such as Briquetting machines and Ultrasonic washing machines. ⚙️🔧

 

Teaching Experience

Assist. Prof. Dr. Mohammad Baraheni has a rich teaching portfolio across various institutions. He has taught courses in Industrial Drawing at University of Kashan, Grinding Technology, Universal Machining, and Advanced Machining Processes at Islamic Azad University. At Arak University of Technology, he has delivered lectures on Computer Numerical Control, Casting, Metallurgy, Metrology, and Welding. Additionally, Dr. Baraheni has taught Plastic Molding Design at University of Tabriz and English for Mechanical Engineering at Shahid Mousavian University. His broad expertise spans key areas in mechanical engineering. 🛠️📚

 

Research Focus

Assist. Prof. Dr. Mohammad Baraheni’s research primarily revolves around advanced machining techniques and their application in composite materials. His work extensively explores rotary ultrasonic machining, ultrasonic-assisted drilling, and grinding technologies for materials like Si3N4 ceramics, carbon fiber reinforced polymers (CFRP), and glass fiber reinforced plastics (GFRP). He has contributed to optimization of process parameters, delamination control, surface integrity, and cutting force prediction. His research also delves into additive manufacturing, material behavior, and industrial mold design, focusing on enhancing precision and efficiency in machining processes. His work bridges mechanical engineering with innovative manufacturing. 🌍

 

Publication Top Notes

  • Residual stress in engineering materials: a review – 104 citations, 2022 📖🔧
  • Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding – 70 citations, 2019 🔬🛠️
  • Parametric analysis of delamination in GFRP composite profiles by performing rotary ultrasonic drilling approach – 50 citations, 2019 🔩💡
  • Comprehensive optimization of process parameters in rotary ultrasonic drilling of CFRP – 43 citations, 2019 ⚙️🔩
  • Parametric investigation of rotary ultrasonic drilling of carbon fiber reinforced plastics – 39 citations, 2018 ⚙️🔧
  • Enhancing dimensional accuracy and surface integrity by helical milling of CFRP – 36 citations, 2019 📐✂️
  • Feasibility study of delamination in rotary ultrasonic-assisted drilling of GFRP – 35 citations, 2018 🔬🛠️
  • Mathematical model to predict cutting force in rotary ultrasonic assisted end grinding of Si3N4 – 32 citations, 2020 📏💻
  • Environmental, mechanical and materialistic effects on delamination damage of glass fiber composites – 31 citations, 2019 🧪🛠️
  • Ultrasonic-assisted friction drilling process of aerospace aluminum alloy (AA7075) – 19 citations, 2021 ✈️🔩
  • Evaluating the hole quality produced by vibratory drilling: additive manufactured PLA+ – 18 citations, 2021 🖨️🔩
  • Statistical study of the effect of various machining parameters on delamination in drilling of CFRP – 17 citations, 2018 🔍💡
  • Investigation on rotary ultrasonic assisted end grinding of silicon nitride ceramics – 13 citations, 2019 ⚙️🔬
  • Experimental comparison of MO40 steel surface grinding performance under different cooling techniques – 13 citations, 2019 🛠️🧊
  • Experimental and empirical model analysis of microsurface texturing on 316 L press-fit joints fabricated by selective laser melting – 12 citations, 2020 🔬🖨️

 

HARPREET AASI | Engineering | Women Researcher Award

HARPREET AASI | Engineering | Women Researcher Award

Dr HARPREET AASI, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, India

Dr. Harpreet Aasi is a Postdoctoral Fellow in Thermal Engineering at IIT Bombay (2024–present). He holds a Ph.D. in Thermal Engineering from IIT Roorkee (2014–2020), an M.Tech. from NIT Raipur, and a B.E. in Mechanical Engineering. His expertise lies in heat transfer enhancement, particularly using ultrasound in electronic cooling systems, involving both numerical (ANSYS Fluent) and experimental methods. A recipient of multiple awards, including the Silver Medal at NIT Raipur, Dr. Aasi has contributed to prestigious projects sponsored by CSIR and DST. He is also an active reviewer for high-impact journals and has published extensively in heat exchanger optimization. 📚💡

Publication Profile

Scopus

Education

Dr. Harpreet Aasi is a distinguished researcher specializing in thermal engineering. Currently, he is pursuing a Postdoctoral Fellowship at the Indian Institute of Technology Bombay (March 2024 – present). He earned his Ph.D. with honors in Thermal Engineering from IIT Roorkee (2014-2020) and completed an M.Tech. in Thermal Engineering with an impressive CPI of 8.96/10 at NIT Raipur (2011-2013). His academic journey began with a B.E. in Mechanical Engineering from New Government Engineering College Raipur, achieving a stellar CPI of 8.99/10 (2006-2010). Dr. Aasi’s dedication to academics is reflected in his strong foundations, scoring 76% in Intermediate (2005-2006) and 85% in Matriculation (2003-2004). 📚✨

Experience

Dr. Aasi conducted numerical (Ansys Fluent) and experimental studies (non-intrusive optical techniques) on single-phase and two-phase flow boiling processes for electronic cooling systems. This research explored the effect of ultrasound parameters, demonstrating its potential for enhancing heat transfer. Ph.D. Research: Investigations on Three-fluid Compact Plate-fin Heat Exchanger 🌡️📊 Dr. Aasi performed extensive experimental and numerical investigations (MATLAB coding) under transient and steady states, addressing flow maldistribution, inlet temperature non-uniformity, and ambient heat interaction. Innovative modeling optimized geometrical attributes for diverse plate-fin types. M.Sc. Research: Parametric Study of Orthotropic Annular Fin with Contact Resistance 🌀🛠️ Dr. Aasi developed a 2D dimensionless steady-state model to assess the thermal performance of orthotropic annular fins, focusing on polymer matrix composites with axis-dependent properties.

Award and Scholarships

Dr. Harpreet Aasi has an impressive academic record, including a Silver Medal at the National Institute of Technology (NIT) Raipur in 2012-2013 🥈. He received the Academic Excellence Award at NIT Raipur in 2011-2012 🎓. Ranked 10th in the Chhattisgarh Swami Vivekanand Technical University state toppers list, he was 1st in New Government Engineering College Raipur in 2010 🏆. Dr. Aasi secured prestigious fellowships, including the Institute Postdoctoral Fellowship at IIT Bombay in 2024 🧑‍🔬 and MHRD scholarships for his Ph.D. (2014-2019) and M.Tech. (2011-2013) 📚. Additionally, he earned state-level merit scholarships during his B.E. studies (2007-2010) 🏅.

Project contribution

Dr. Harpreet Aasi has conducted groundbreaking research on optimizing the performance of three-fluid heat exchangers through both numerical and experimental investigations. Sponsored by CSIR, this research aims to improve heat transfer efficiency and system performance. Additionally, his study on the effect of temperature and flow nonuniformities on three-fluid compact heat exchangers, sponsored by DST, delves into understanding how such factors influence overall efficiency. These contributions are crucial in advancing thermal management systems, with potential applications in various industries, from energy to manufacturing. 🌡️🔧

Research focus

Dr. Harpreet Aasi’s research primarily focuses on the thermo-hydraulic performance and optimization of multi-fluid heat exchangers, particularly three-fluid systems. His work investigates the effects of flow non-uniformity, ambient heat ingression, and temperature nonuniformity on the efficiency and dynamic behavior of cross-flow and plate-fin heat exchangers. Using advanced techniques like Artificial Neural Networks (ANN) and second law analysis, he aims to improve heat exchanger designs for enhanced thermal management in various engineering applications. His research is crucial for energy efficiency and thermal optimization in industries such as cryogenics, power generation, and heat recovery. 🔥🔧⚙️💡

Publication top notes

Investigation on cross-flow three-fluid compact heat exchanger under flow non-uniformity: an experimental study with ANN prediction

The impact of ambient heat ingression on performance of cryogenic three-fluid cross-flow compact heat exchanger

Experimental investigation and ANN modelling on thermo-hydraulic efficacy of cross-flow three-fluid plate-fin heat exchanger

Detailed design optimization of three-fluid parallel-flow plate-fin heat exchanger using second law analysis

Influence of flow non-uniformity on the dynamic behaviour of three-fluid cross-flow compact heat exchanger

A novel equivalence approximate model for second law based optimization of three-fluid cross-flow plate-fin heat exchanger using genetic algorithm

 

Suganya. R | Engineering | Best Researcher Award

Dr. R. Suganya| Engineering | Best Researcher Award

Associate Professor,  Dr.  N.G.P Institute of Technology,  India.

Dr. R. Suganya, an Associate Professor at Dr. N.G.P Institute of Technology, has nearly 20 years of experience in engineering education. Her research focuses on mobile networks, IoT, and machine learning, resulting in 21 publications in Scopus-indexed journals. Notable achievements include the Academic Excellence Award from Novel Research Academy and multiple NPTEL accolades. As a mentor for the IITB-AICTE Mapathon, she has demonstrated her commitment to student engagement and collaborative learning. Dr. Suganya’s impressive contributions to academia and research make her a deserving candidate for the Research for Best Researcher Award.

Publication Profile

Google Scholar

Educational Background 

Dr. R. Suganya holds a commendable academic record, beginning with her Bachelor of Engineering (B.E.) in Electronics and Communication from V.L.B Janakiammal College of Engineering and Technology, where she graduated with First Class honors. She continued her education at Kumaraguru College of Technology, earning a Master of Engineering (M.E.) in Computer Science and Engineering with Distinction. Her commitment to academic excellence culminated in a Ph.D. from Anna University, Chennai, where she conducted advanced research, further solidifying her expertise in her field. This solid educational foundation underpins her effective teaching and innovative research contributions in engineering.

Professional Experiences

Dr. R. Suganya has a robust academic background, currently serving as an Associate Professor at Dr. N.G.P Institute of Technology since May 2023, following an extensive tenure of nearly 17 years at Sri Krishna College of Technology. Her teaching experience spans across various levels of engineering education, showcasing her dedication to nurturing the next generation of engineers. Additionally, her role as a lecturer at Nanjiah Lingammal Polytechnic College provided her with foundational teaching experience that further solidified her pedagogical skills.

Research Interests and Contributions

Dr. Suganya’s research interests are primarily in the domains of mobile networks, IoT, and machine learning, evidenced by her impressive publication record. She has authored 21 articles in Scopus-indexed journals, covering innovative topics such as channel allocation methods, secure voting systems, and cancer recognition frameworks. Her recent work involves the application of advanced algorithms and machine learning techniques, demonstrating her commitment to leveraging technology for real-world applications.

Awards and Achievements  

Dr. Suganya’s achievements have not gone unnoticed. She has received several accolades, including the Academic Excellence Award from Novel Research Academy and the NPTEL Discipline Star Award on two occasions. Her recognition as a mentor for the IITB-AICTE Mapathon further underscores her ability to guide students and foster collaborative learning environments. Such acknowledgments illustrate her impact within the academic community and her dedication to excellence in research and teaching.

Conclusion

In conclusion, Dr. R. Suganya’s extensive experience, notable research contributions, and numerous accolades make her an exceptional candidate for the Research for Best Researcher Award. Her commitment to academic excellence, coupled with her innovative research in technology, positions her as a leading figure in her field. Recognizing her contributions through this award would not only honor her achievements but also inspire others in the academic community to pursue excellence in research and education.

Publication Top Notes

  • Automated smart trolley with smart billing using Arduino 📝 (22) – 2016
  • Classification of DDoS attacks–A survey 📊 (13) – 2020
  • Simulation and Analysis of SVHM Technique for DCMLI under Transient Conditions with Non-Linear Loads 🔬 (8) – 2017
  • Blockchain based secure voting system using IoT 🔒 (6) – 2020
  • Reduction of THD in Single Phase AC to DC Boost Converter using PID controller ⚡ (6) – 2014
  • Fuzzy rough set inspired rate adaptation and resource allocation using Hidden Markov Model (FRSIRA-HMM) in mobile ad hoc networks 🧠 (5) – 2019
  • Automated Toll Plaza System Using RFID and GSM Technology 🚦 (5) – 2018
  • Tamper detection using watermarking scheme and k-mean clustering for bio-medical images 🖼️ (5) – 2016
  • Voltage control of AC-DC converter using sliding mode control ⚙️ (5) – 2013
  • Air Quality Monitoring System with Emergency Alerts Using IoT 🌍 (4) – 2021
  • Detect fake identities using improved Machine Learning Algorithm 🔍 (4) – 2021
  • Smart sentimental analysis of the impact of social media on COVID-19 📱 (4) – 2021
  • Pathogenesis of oral squamous cell carcinoma—an update 🦷 (4) – 2019
  • Identifying and Ranking Product Aspects based on Consumer reviews 🛍️ (4) – 2015
  • An Iterative Image Restoration Scheme for Degraded Face Images 🖥️ (4) – 2013
  • Product review analysis by web scraping using NLP 📝 (3) – 2022
  • An Erlang Factor integrated channel allocation method for boosting quality of services in mobile ad hoc networks 📶 (3) – 2018
  • Denial-of-Service Attack Detection Using Anomaly with Misuse Based Method 🚫 (3) – 2016
  • Development and Proposal System for the Formulation of Solar paint 🌞 (2) – 2021
  • Immunohistochemical expression of Bcl‑2 in oral squamous cell carcinoma 🩺 (2) – 2009

 

Mehrdad ghamari | Engineering Award | Best Researcher Award

Mr. Mehrdad ghamari | Engineering Award | Best Researcher Award

Mr. Mehrdad ghamari, Edinburgh Napier University, Edinburgh, United Kingdom

Dr. Mehrdad Ghamari is a visiting researcher at Edinburgh Napier University, specializing in structural engineering and photovoltaic integration for passive cooling. He earned his M.Sc. from the University of Isfahan and has held lecturer positions at Islamic Azad University. His research focuses on the effects of lateral constraints on unreinforced masonry walls and has resulted in numerous publications in respected journals. Fluent in English and Persian, he has significant experience in civil engineering design and supervision, having designed over 100 concrete and steel structures. 🎓🏗️

 

Publication Profile

Google Scholar

Education

Mr. Ghamari holds a Master’s degree in Structural Engineering from the University College of Engineering, University of Isfahan, where he excelled with a GPA of 17.76 out of 20. His academic journey began with a Bachelor’s degree in Civil Engineering from the University of Tehran. His commitment to ongoing education is evident through his roles as a visiting researcher at renowned universities in the UK and Portugal.

Research Experience & Interests

Mr. Ghamari has actively engaged in multiple innovative research projects, focusing on topics such as photovoltaic integration for passive cooling applications and the effects of lateral constraints on historical masonry walls. His work is supervised by respected professors in the field, showcasing his ability to collaborate effectively and contribute to meaningful research. Notable projects include analyzing the structural integrity of Persian historical masonry and investigating the impact of advanced materials like fiber-reinforced polymers on traditional structures.

Academic Experience

Mr. Ghamari has lectured on a range of subjects, including structural analysis and mechanics of materials, at various institutions. His ability to convey complex concepts to students reflects his deep understanding of the subject matter and his commitment to academic excellence

Work Experience

Mr. Ghamari has accumulated substantial practical experience in civil engineering. He has designed and supervised numerous concrete and steel structures in Iran and holds a license for supervision and implementation within the Construction Engineering Organization of Iran. His practical insights complement his academic prowess, making him a well-rounded candidate.

Conclusion

Mr. Mehrdad Ghamari’s extensive educational background, innovative research contributions, teaching experience, and practical engineering skills make him a highly suitable candidate for the Best Researcher Award. His commitment to advancing sustainable engineering practices and his contributions to the field demonstrate his potential to influence future developments in civil engineering and structural analysis.

Publication Top Notes

  • Advancing sustainable building through passive cooling with phase change materials, a comprehensive literature review 🌱 – Cited by: 8 | Year: 2024
  • Solar Wall Technology and Its Impact on Building Performance ☀️ – Cited by: 3 | Year: 2024
  • Parametric Study of Failure Load of Persian Brick Masonry Domes Stiffened by FRP Strips under Concentrated Monotonic Loads 🏛️ – Cited by: 3 | Year: 2016
  • Biomass Derived Biofluorescent Carbon Dots for Energy Applications: Current Progress and Prospects 🔋 – Cited by: 2 | Year: 2024
  • Effects of lateral constraints, geometrical characteristics and pre-compression level on the Drift capacity of Persian historical masonry walls 🧱 – Cited by: 2 | Year: 2021
  • Effects of Lateral Constraints and Geometrical Characteristics on Deformation Capacity of the Persian Historic Unreinforced Masonry Shear Walls under Uncertainty Conditions ⚖️ – Cited by: 2 | Year: 2020
  • Determination of Partial Safety Factors (γM) for Model Uncertainties for Persian Historical Masonry Materials 🏗️ – Cited by: 1 | Year: 2021
  • Valorization of diverse waste-derived nanocellulose for multifaceted applications: A review 🌿 Year: 2024
  • Solar Window Innovations: Enhancing Building Performance through Advanced Technologies 💡  Year: 2024
  • Flanges’ Impact on Persian Historical Masonry Walls: Modeling Safety Factors 🏢 Year: 2024

 

 

mehrdad ghamari | Engineering | Best Researcher Award

Mr. mehrdad ghamari | Engineering | Best Researcher Award

PhD student,  Edinburgh Napier University, Edinburgh, United Kingdom United Kingdom

Profile :

Scopus

Education Background :

Mehrdad Ghamari has a solid educational foundation, culminating in a Ph.D. and impressive degrees in Structural Engineering and Civil Engineering. His academic journey includes prestigious institutions, such as the University of Isfahan and the University of Tehran, where he maintained high GPAs, showcasing his commitment to excellence. His ongoing role as a Visiting Researcher at prominent universities in the UK and Portugal demonstrates his pursuit of advanced knowledge and skills in his field.

Professional Experience :

Ghamari’s extensive work experience, including his role in designing and supervising numerous concrete and steel structures, showcases his practical application of research findings in real-world settings. His professional memberships and certifications reflect a commitment to lifelong learning and adherence to industry standards, enhancing his credibility as a researcher and engineer.

Research Experience & Interests :

Ghamari’s research portfolio reflects significant contributions to civil engineering, particularly in structural analysis and innovative materials. His work on photovoltaic integration for passive cooling and the effects of lateral constraints on historical masonry demonstrates both depth and breadth in addressing contemporary challenges in engineering. Collaborations with esteemed professors and publications in recognized journals further solidify his status as a leading researcher.

Award And Recognition :

Mehrdad Ghamari’s exceptional contributions to the field of civil engineering have earned him significant recognition. He has been honored for his innovative research on sustainable building technologies, receiving accolades from various academic and professional organizations. His publications in high-impact journals demonstrate his commitment to advancing knowledge and practices in structural engineering. Ghamari’s dedication to education and mentorship has also been acknowledged, with awards recognizing his outstanding teaching efforts at multiple universities. These achievements reflect his passion for engineering and his influence on both the academic community and the broader industry.

Conclusion :

In summary, Mehrdad Ghamari’s exceptional educational background, extensive research experience, impactful academic contributions, and robust professional engagement make him a highly suitable candidate for the Research for Best Researcher Award. His commitment to advancing the field of civil engineering through innovative research and teaching positions him as a leader in his domain, deserving of recognition for his achievements and contributions.

Publication Top Notes :

  • Solar Window Innovations: Enhancing Building Performance through Advanced Technologies
    Ghamari, M., Sundaram, S. (2024). Energies, 17(14), 3369. 📄 (0 citations)
  • Advancing sustainable building through passive cooling with phase change materials, a comprehensive literature review
    Ghamari, M., See, C.H., Hughes, D., Patchigolla, K., Sundaram, S. (2024). Energy and Buildings, 312, 114164. 📄 (5 citations)
  • Flanges’ Impact on Persian Historical Masonry Walls: Modeling Safety Factors
    Ghamari, M., Karimi, M.S., Lourenço, P.B., Sousa, H.S. (2024). International Journal of Engineering, Transactions B: Applications, 37(6), pp. 1136–1145. 📄 (0 citations)
  • Solar Wall Technology and Its Impact on Building Performance
    Ghamari, M., Sundaram, S. (2024). Energies, 17(5), 1075. 📄 (2 citations)
  • Effects of Lateral Constraints and Geometrical Characteristics on Deformation Capacity of the Persian Historic Unreinforced Masonry Shear Walls under Uncertainty Conditions
    Ghamari, M., Karimi, M.S., AmirShahkarami, A. (2021). International Journal of Engineering, 33(11), pp. 2127-2136. 📄 (0 citations)

Mohammad Jafar Hemmati | Engineering Award | Best Researcher Award

Assist. Prof. Dr. Mohammad Jafar Hemmati | Engineering Award | Best Researcher Award

Assist. Prof. Dr. Mohammad Jafar Hemmati, Sirjan University of Technology, Iran

Assist. Prof. Dr. Mohammad Jafar Hemmati, based in Kerman, Iran, is an accomplished electrical engineer specializing in low-voltage and low-noise oscillator designs. He holds a PhD in Electrical Engineering from Shahid Bahonar University of Kerman (2019), focusing on Colpitts quadrature oscillators in CMOS technology. He also earned an MSc from Ferdowsi University of Mashhad (2010) and a BSc from Shahid Chamran University of Kerman. Currently, he lectures at Sirjan University of Technology, where he teaches courses on CMOS Integrated Circuits and Digital Logic Circuits. His research interests include VCOs, frequency dividers, and low-noise amplifiers. 📡👨‍🏫📘

 

Publication Profile

Google Scholar

Education 🎓

Dr. Mohammad Jafar Hemmati completed his Ph.D. in Electrical Engineering at Shahid Bahonar University of Kerman (2014-2019). His thesis focused on designing a low-voltage Colpitts quadrature oscillator using the gm-enhanced technique in CMOS technology. He also holds an M.Sc. in Electrical Engineering from Ferdowsi University of Mashhad (2008-2010) and a B.Sc. from Shahid Chamran University of Kerman (2003-2007). His academic background strongly supports his expertise in low-power and low-noise circuit design.

Work Experience 💼

Dr. Hemmati is currently a lecturer at Sirjan University of Technology, where he teaches CMOS Integrated Circuits, Digital Logic Circuits, and more. His previous roles include being the head of the electrical department at Islamic Azad University, Firouzabad branch, and a design engineer at Kerman Tablo Electrical and Electronics Engineering Corporation. His broad teaching experience and industry involvement enrich his contributions to research and academia.

Research Interests 🔬

His research focuses on designing low-voltage and low-noise voltage-controlled oscillators (VCOs), injection-locked frequency dividers, low-noise amplifiers, and active mixers. These areas are critical for advancing modern communication and signal processing systems, reflecting his strong alignment with cutting-edge engineering challenges.

Conclusion 🌟

Dr. Mohammad Jafar Hemmati’s solid educational foundation, extensive research, and professional experience make him a highly suitable candidate for the Research for Best Researcher Award. His innovative work on low-power, low-noise VCOs and oscillators has significantly contributed to the advancement of electrical engineering, establishing him as a leader in his field.

 

Publication Top Notes

  • 📚 A CMOS quadrature VCO with optimized Colpitts topology for low-voltage applications – 9 citations, 2018
  • 📚 Design optimization of the complementary voltage controlled oscillator using a multi-objective gravitational search algorithm – 8 citations, 2023
  • 📚 A low-voltage swing-enhanced Colpitts CMOS LC-QVCO based on first-harmonics coupling – 7 citations, 2019
  • 📚 Ultra‐low‐phase‐noise CMOS LC quadrature voltage controlled oscillator with Colpitts topology – 7 citations, 2014
  • 📚 A second-harmonic LC-quadrature voltage controlled oscillator with direct connection of MOSFETs’ substrate – 6 citations, 2012
  • 📚 Analysis and review of main characteristics of Colpitts oscillators – 5 citations, 2021
  • 📚 CMOS second-harmonic quadrature voltage controlled oscillator using substrate for coupling – 5 citations, 2011
  • 📚 Novel six‐phase ring voltage controlled oscillator with wide frequency tuning range – 4 citations, 2024
  • 📚 A New Low-Power and High-Linearity CMOS Bulk-Injection Mixer in Technology – 4 citations, 2018
  • 📚 Low power differential Colpitts injection-locked frequency dividers using 0.18 μm CMOS technology – 3 citations, 2018

 

Ali Fardoost | Engineering | Best Researcher Award

Mr. Ali Fardoost | Engineering | Best Researcher Award

Graduate Research Assistant, Rutgers University,  United States

Ali Fardoost is a Ph.D. student in Electrical Engineering at Rutgers University, with a strong focus on biosensing, biosensor fabrication, and nanobiotechnology. His research involves the development of innovative cancer biomarker detection systems, microfluidics, and nanowell-based biosensors. With a B.Sc. from the University of Tehran, his academic achievements include a top ranking and an award-winning thesis on cancer detection using real-time impedance measurement. Ali has hands-on experience in cleanroom environments and expertise in advanced software tools. His contributions are demonstrated in several publications, reflecting his dedication to advancing healthcare diagnostics and nanotechnology.

Publication Profile :

Scopus

Educational Background :

Ali Fardoost holds a Ph.D. in Electrical Engineering from Rutgers University and a B.Sc. from the University of Tehran, with excellent academic records (GPA of 4/4 and 3.64/4, respectively). His B.Sc. thesis, which developed a system for differentiating healthy and cancerous lymph nodes, reflects a focus on real-world, critical health issues. Being ranked in the top 0.07% of a national university entrance exam and being recognized as an exceptional talent at the University of Tehran further underscore his academic excellence and intellectual prowess.

Professional Background :

Ali Fardoost is a dedicated researcher currently pursuing his Ph.D. in Electrical Engineering at Rutgers University, with a focus on biosensor development for cancer biomarker detection. He is a Graduate Research Assistant in the NanoBioElectronics Lab, where he designs and fabricates nanowell-based biosensors for healthcare applications. His prior experience includes research on blood impedance spectroscopy for breast cancer diagnosis at the University of Tehran. Ali has developed and tested various biosensors, combining his skills in microfabrication and data analysis. His work aims to innovate in biomedical diagnostics, with a particular focus on cancer detection technologies.

Research Interests :

Ali Fardoost’s research interests span a range of cutting-edge topics in biosensing, biosensor fabrication, microfluidics, nanobioelectronics, and cancer biomarker detection. His focus on developing biosensors for cancer detection, particularly using microfabrication techniques and impedance spectroscopy, aligns with the forefront of bioengineering research. Additionally, his work on nanobiotechnology indicates his commitment to advancing interdisciplinary research, blending electrical engineering with biomedical applications. These areas are pivotal for innovations in healthcare, specifically in diagnosing and monitoring cancer, a critical global health concern.

Research Experience :

Ali has extensive research experience at both Rutgers University and the University of Tehran. His work includes fabricating biosensors for cancer biomarker detection, performing blood impedance spectroscopy for breast cancer diagnosis, and measuring the impedance of thyroid nodules for intraoperative assessment. His hands-on expertise in microfabrication, sensor design, and real-time diagnostics, coupled with his contributions to impactful projects such as cancer detection, demonstrates his deep engagement in the practical application of his research.

Award And Recognition :

Ali Fardoost has been recognized for his exceptional academic and research achievements. He was awarded the Best B.Sc. Thesis Award at the University of Tehran in 2023 for his innovative work on cancer detection using impedance measurement. Additionally, he was accepted for a Master’s program without the need for an entrance exam due to his exceptional academic performance. Ranked 25th among all undergraduate students at the University of Tehran’s College of Electrical and Computer Engineering, Ali also placed in the top 0.07% of participants in Iran’s highly competitive Nationwide University Entrance Exam (Konkoor).

Conclusion :

Ali Fardoost’s strong academic background and cutting-edge research in biosensing, cancer biomarker detection, and nanobiotechnology make him a highly suitable candidate for the Research for Best Researcher Award. His Ph.D. work at Rutgers University and B.Sc. from the University of Tehran demonstrate his exceptional academic performance, while his research projects reflect a deep commitment to solving real-world healthcare challenges. His achievements in microfluidics and biosensor fabrication, along with his focus on cancer diagnosis, show his potential for meaningful contributions to biomedical engineering. Overall, his innovative research and dedication make him a deserving candidate for this prestigious award.

Publication Top Notes :

  • Optimization of Nanowell-Based Label-Free Impedance Biosensor Based on Different Nanowell Structures – Fardoost, A., Raji, H., Javanmard, M. (2024) 📅 Biosensors, 14(9), 426 | Cited by: 0
  • Intraoperative Assessment of High-Risk Thyroid Nodules Based on Electrical Impedance Measurements: A Feasibility Study – Beheshti Firoozabadi, J., Mahdavi, R., Shamsi, K., Akbari, M.E., Abdolahad, M., Fardoost, A. (2022) 📅 Diagnostics, 12(12), 2950 | Cited by: 0