Mehmet Bilgili | Mechanical Engineering | Best Researcher Award

Prof. Dr. Mehmet Bilgili | Mechanical Engineering | Best Researcher Award

Professor at Cukurova University, Turkey

Prof. Mehmet Bilgili is a distinguished academic in mechanical engineering, currently serving at Cukurova University. With decades of experience in renewable energy, thermodynamics, and fluid mechanics, his work bridges traditional engineering with cutting-edge technologies like artificial intelligence and machine learning. He has contributed significantly to global scientific literature, particularly in wind and solar energy forecasting, and is recognized for his role in sustainable technology development. His interdisciplinary approach and leadership in both academic and research settings have earned him widespread respect. Prof. Bilgili is dedicated to educating future engineers while driving innovation in energy systems and environmental technologies.

Publication Profile

Google Scholar

Academic Background

Prof. Mehmet Bilgili earned all his academic degrees from Cukurova University in Turkey. He completed his undergraduate studies in Mechanical Engineering in 1992, followed by a postgraduate degree in 2003, and a Ph.D. in 2007. His doctoral research focused on predicting wind speed and power potential using artificial neural networks, while his postgraduate thesis explored wind energy potential in various Turkish locations. His education reflects a strong foundation in engineering fundamentals, enriched with advanced data-driven research methods. Prof. Bilgili has continuously applied and expanded this knowledge in his teaching, research, and scholarly contributions to the field of energy systems.

Professional Background

Prof. Bilgili has held academic positions at Cukurova University for over two decades, progressing from lecturer to full professor. He served in various roles at the university’s Ceyhan Engineering Faculty and Adana Vocational School, leading departments and shaping academic programs. His experience includes teaching core mechanical engineering subjects and supervising both undergraduate and postgraduate research. He has also contributed administratively by supporting faculty development and curriculum design. Known for integrating theory with practice, Prof. Bilgili consistently brings real-world applications into his teaching and has guided numerous engineering projects, especially in energy systems and thermal sciences.

Awards and Honors

Although specific individual awards are not explicitly listed, Prof. Mehmet Bilgili’s continuous publication in top-tier SCI journals, contributions to international conferences, and involvement in books with major publishers like SpringerNature indicate high recognition within his field. His promotion to full professor and repeated collaborations with fellow experts suggest institutional and peer acknowledgment of his impact. His recent studies on climate forecasting and machine learning models in energy systems also reflect cutting-edge innovation, often associated with research excellence. Given this academic trajectory, he is a strong candidate for honors such as the Best Researcher Award.

Research Focus

Prof. Mehmet Bilgili’s research focuses on renewable energy systems, with specialization in wind and solar power. He applies artificial intelligence and machine learning methods, such as neural networks and deep learning models (LSTM, CNN, GRU), to forecast climate patterns, optimize power generation, and improve system performance. His work spans across heat transfer, fluid mechanics, thermodynamics, HVAC, and environmental sustainability. Recently, he has explored sea currents, temperature forecasting, and hybrid energy systems. Prof. Bilgili is driven by the goal of achieving cleaner, smarter, and more efficient energy systems for the future, merging engineering principles with computational innovation.

Publication Top Notes

📘Offshore wind power development in Europe and its comparison with onshore counterpart
Year: 2011 | Cited by: 631 | 🌊💨⚡🌍

📘 Application of artificial neural networks for the wind speed prediction of target station using reference stations data
Year: 2007 | Cited by: 386 | 🤖💨📈🌐

📘 An overview of renewable electric power capacity and progress in new technologies in the world
Year: 2015 | Cited by: 297 | 🌱🔋🌎📊

📘 Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-   alcohol mixtures
Year: 2016 | Cited by: 198 | 🚗⚗️🧠📉

Conclusion

Prof. Mehmet Bilgili is an outstanding candidate for the Best Researcher Award, with over two decades of academic service and a distinguished research career in mechanical engineering and renewable energy systems. His work spans critical areas such as wind and solar energy, thermodynamics, and the integration of artificial intelligence in energy modeling—fields of immense global relevance. With a prolific publication record in SCI-expanded journals, authorship of influential books, and regular participation in international conferences, Prof. Bilgili demonstrates a consistent commitment to scientific advancement and knowledge dissemination. His interdisciplinary research, combined with impactful teaching and mentoring, firmly establishes him as a leading figure in energy sustainability and engineering innovation.

 

 

Abdollah Arasteh | Industrial Engineering | Best Researcher Award

Assoc. Prof. Dr. Abdollah Arasteh | Industrial Engineering | Best Researcher Award

Assoc. Prof. Dr. Abdollah Arasteh, Babol Noshirvani University of Technology, Iran

Assoc. Prof. Dr. Abdollah Arasteh, born on September 13, 1981, in Sari, Iran, is a distinguished academic in Industrial Engineering. He serves as a faculty member at Babol Noshirvani University of Technology. With a strong foundation in strategic investment evaluation and knowledge management, Dr. Arasteh combines analytical expertise with practical insight. His interdisciplinary research spans real options theory, systems engineering, and facility planning. Known for his contributions to higher education and scholarly research, he actively participates in national-level initiatives and academic mentorship. Dr. Arasteh continues to influence the field through teaching, research, and leadership in engineering innovation. 🌍📘🛠️

Publication Profile

Google Scholar

🎓 Education

Dr. Arasteh earned his PhD in Industrial Engineering from Iran University of Science and Technology (2010–2014), graduating with excellent distinction. His doctoral research focused on developing real options theory for evaluating complex investment projects under uncertainty. He completed his MSc (2008–2010) and BSc (1999–2003) in Industrial Engineering at Amirkabir University of Technology. His master’s thesis explored the integration of knowledge management in educational institutions. Both theses were supervised by prominent experts in the field. Throughout his academic path, Dr. Arasteh has consistently demonstrated academic excellence and a strong commitment to research innovation in industrial and systems engineering. 🧠📚🔧

💼 Experience

Dr. Abdollah Arasteh is currently an Associate Professor at Babol Noshirvani University of Technology, where he engages in both teaching and research. His academic career spans over a decade, focusing on advanced topics in engineering statistics, decision-making models, and investment analysis. He has mentored students, led departmental research activities, and participated in curriculum development. Prior to his academic appointments, he worked on applied projects involving knowledge systems and facility management. His professional experience bridges theory and practice, contributing to Iran’s academic and industrial sectors through consulting, training, and policy advisory in industrial engineering. 🏫🔍📈

🏅 Awards and Honors

Dr. Arasteh was awarded a prestigious Fellowship by Iran’s Ministry of Science, Education and Technology for his PhD studies at Babol Noshirvani University of Technology (2013–2014). This recognition highlights his academic excellence and leadership potential in industrial engineering. His consistent academic performance and innovative thesis work earned him top honors during his postgraduate studies. He is recognized among peers for advancing real options theory and knowledge systems in engineering contexts. His accolades reflect his dedication to academic integrity, innovation, and societal contribution, positioning him as a respected figure in Iran’s scientific and educational landscape. 🎖️📜🏆

🔬 Research Focus

Dr. Arasteh’s research primarily centers on Real Options Analysis (ROA), applying financial option theories to real-world investment decisions under uncertainty. He has also contributed significantly to Knowledge Management, focusing on organizational learning and strategic knowledge use. His work in Engineering Statistics includes design of experiments, quality control, and probabilistic design, aiding industrial efficiency and innovation. Additionally, he explores Facilities Planning, integrating systems thinking into spatial and infrastructural optimization. His interdisciplinary approach connects financial theory, systems modeling, and human factors, aiming to improve strategic decision-making across industrial and educational domains. 📊🧩🏗️

Publication Top Notes

📘 Considering the investment decisions with real options games approach 🔁 32 📅 2017 🌱📈
📘 Application of gray systems and fuzzy sets in combination with real options theory in project portfolio management 🔁 24 📅 2014 ⚙️📊
📘 A multi-stage multi criteria model for portfolio management 🔁 21 📅 2014 📋📉
📘 Combination of real options and game-theoretic approach in investment analysis 🔁 20 📅 2016 🎲💡
📘 Supply chain management under uncertainty with the combination of fuzzy multi-objective planning and real options approaches 🔁 15 📅 2020 🔄📦
📘 A proposed real options method for assessing investments 🔁 14 📅 2014 💰🔍
📘 Sustainable energy development under uncertainty based on the real options theory approach 🔁 10 📅 2022 ♻️⚡
📘 Role of information technology in business revolution 🔁 10 📅 2011 💻🚀
📘 Optimizing inventory management costs in supply chains by determining safety stock placement 🔁 7 📅 2022 📦📏
📘 Risk management of disruption and sustainable development of supply chains 🔁 6 📅 2023 ⚠️🔗
📘 Inventory policies and dynamic pricing under possibility and rivals 🔁 5 📅 2014 💲📈
📘 Considering the game-theoretic approach and ultra combinative costs on scheduling 🔁 5 📅 2014 🕒📊
📘 Considering the business system’s complexity with a network approach 🔁 4 📅 2014 🧠🕸️
📘 Knowledge flows automation and designing a knowledge management framework for educational organizations 🔁 4 📅 2010 🏫🔄
📘 Mathematical modeling of flexible production lines with different part types on unreliable machines by a priority rule 🔁 2 📅 2022 ⚙️🔧
📘 Sustainable Planning of Supply Chains in Large-Scale Systems with Real Options Analysis 🔁 2 📅 2019 🔄🏗️
📘 Investigating the Human Reliability in the Healthcare Sector Using the Fuzzy Analytic Network Process and the Success Likelihood Index Method 🔁 1 📅 2024 🏥🤖

Manjunath Thindlu Rudrappa | Engineering | Best Researcher Award

Mr. Manjunath Thindlu Rudrappa | Engineering | Best Researcher Award

Mr. Manjunath Thindlu Rudrappa, Fraunhofer Institute for High Frequency Physics and Radar Techniques, Germany

Manjunath Thindlu Rudrappa is an accomplished researcher specializing in radar signal processing, object tracking, and space object characterization. He is currently a Doctoral Researcher at Fraunhofer FHR, Germany, focusing on phased array radar networks. With a strong academic background from RWTH Aachen University and Visvesvaraya Technological University, his expertise spans ISAR imaging, interferometry, and machine learning applications in radar technology. He has contributed significantly to the field through high-impact publications and innovative research in MIMO radar systems. Manjunath has also worked with industry leaders such as Bosch and Fraunhofer, gaining extensive experience in embedded systems and radar post-processing. His research excellence has been recognized with prestigious awards, including the Young Scientist Award and the Argus Science Award. Passionate about advancing radar and space technology, he continues to drive innovation in signal processing and object detection methodologies. 🚀📡

Publication Profile

Google Scholar

📚 Education

Manjunath earned his Bachelor of Engineering (B.E.) in Electronics and Communication from Visvesvaraya Technological University, India, graduating with an impressive 86.41% aggregate. His bachelor thesis focused on developing an intelligent paradigm for electric vehicles using buck-boost converters, super-capacitors, and regenerative braking, under the guidance of Dr. Bhakthavatsalam and Mr. Gowranga K.H from IISc Bangalore. He pursued his Master of Science (M.Sc.) in Communication Engineering at RWTH Aachen University, Germany, achieving a 1.5 aggregate. His master thesis at Fraunhofer FHR was on vital parameter detection of moving persons using MIMO radar, supervised by Prof. Dr.-Ing Peter Knott and Dr.-Ing Reinhold Herschel. Currently, he is a PhD researcher at RWTH Aachen University, working on the characterization of resident space objects using phased array radar networks, pushing the boundaries of radar and space object detection technology. 🎓📡

💼 Experience

Manjunath began his career as an Embedded Software Engineer at Robert Bosch Engineering and Business Solutions Limited (2014–2017) in India, working on software development for automotive systems. Moving to Bosch Engineering GmbH, Germany, he served as an Embedded Application Software Developer (2018–2019), specializing in software solutions for automotive applications. His transition to Fraunhofer FHR in Germany marked his entry into radar research, where he worked as a Work Student (2019–2020) on vital parameter estimation, detection, tracking, and clustering. Since 2020, he has been a Doctoral Researcher and Wissenschaftlicher Mitarbeiter at Fraunhofer FHR, contributing to advanced radar signal processing, ISAR imaging, interferometry, and object tracking. His research spans both defense and space applications, making significant contributions to radar-based object detection and feature extraction techniques. 🔬🚀

🏆 Awards & Honors

Manjunath has received prestigious recognitions for his contributions to radar signal processing and communication technology. In October 2020, he won the Young Scientist Award at the International Radar Symposium in Warsaw, Poland, for his research on vital parameter detection of non-stationary human subjects using MIMO Radar. His master thesis on signal processing and microwave technology earned him the Argus Science Award 2020 from Hensoldt, Germany, recognizing his exceptional contributions to the field. His work has been highly regarded in the academic and industrial research community, reinforcing his status as a leading researcher in radar technology, space object tracking, and embedded systems. 🏅📡

🔬 Research Focus

Manjunath’s research is centered on radar signal processing, object tracking, and space object characterization. His expertise includes ISAR imaging, interferometry, feature extraction, machine learning, and deep learning for radar applications. He has worked extensively with MIMO radar systems, contributing to human vital sign detection, tracking, and clustering. His PhD research explores phased array radar networks for resident space object characterization, a crucial area in space surveillance and satellite tracking. Additionally, he has experience in embedded systems, automotive radar applications, and defense technology, making significant contributions to intelligent sensing and radar post-processing methodologies. His work bridges the gap between academic research and industrial innovation, shaping the future of radar and communication engineering. 🌍📡🚀

Publication Top Notes

1️⃣ Moving human respiration sign detection using mm-wave radar via motion path reconstructionCited by: 17 | Year: 2021 📡👤💨
2️⃣ Vital parameters detection of non-stationary human subject using MIMO radarCited by: 11 | Year: 2020 📡🔬🧍
3️⃣ Distinguishing living and non-living subjects in a scene based on vital parameter estimationCited by: 8 | Year: 2021 🔍👤🏠
4️⃣ Characterisation of resident space objects using multistatic interferometric inverse synthetic aperture radar imagingCited by: 4 | Year: 2024 🛰️📡📊
5️⃣ 3D reconstruction of resident space objects using radar interferometry and nonuniform fast Fourier transform from sparse dataCited by: 4 | Year: 2022 🌍📡📉
6️⃣ Improvements of GESTRA—A phased-array radar network for the surveillance of resident space objects in low-Earth orbitCited by: 2 | Year: 2023 🚀🛰️📶
7️⃣ RSO feature extraction using Super Resolution Wavelets and Inverse Radon TransformCited by: 1 | Year: 2022 📡📊📉
8️⃣ High-resolution human clustering based on complex signal correlation coefficientsCited by: 1 | Year: 2022 🏠📡📊
9️⃣ Characterisation of Resident Space Objects and Synchronisation Error Compensation in Multistatic Interferometric Inverse Synthetic Aperture Radar ImagingYear: 2025 🛰️📡📊
🔟 Clusterung von DetektionenYear: 2022 📡📍🔍

Conclusion

Mr. Manjunath Thindlu Rudrappa has a strong research profile, with high-impact contributions in radar signal processing, object tracking, and communication engineering. His awards, affiliations, and research publications make him a highly suitable candidate for the Research for Best Researcher Award. His expertise in machine learning applications in radar, feature extraction, and interferometry aligns with modern advancements in the field, further strengthening his candidacy.

Bilal Elhajjar | Engineering | Industry Impact Academic Award

Dr. Bilal Elhajjar | Engineering | Industry Impact Academic Award

Process Engineering & Development Manager at United Steel Industrial Co, Kuwait

Dr. Bilal Elhajjar is a seasoned engineering professional and academic with over 18 years of experience in the steel and energy industries. He specializes in process engineering, logistics optimization, hydrogen management, and supply chain strategies. As the Process Engineering, Development, and Logistics Manager at KWTSTEEL, he has led over 1000 projects, including steel plant revamps, cost reduction initiatives, and feasibility studies. His expertise spans project management, industrial research, and technical leadership, saving his company approximately $1 million annually through optimized logistics. Academically, he holds a PhD in Fluid Mechanics and has contributed to cutting-edge research in nanofluidics, heat transfer, and industrial process modeling, with multiple high-impact publications. Previously, he served as an Assistant Professor and postdoctoral researcher, bridging academia and industry. His multidisciplinary knowledge and leadership in both industrial and academic settings make him a distinguished figure in engineering and applied research.

Professional Profile

Education 🎓

Dr. Bilal Elhajjar holds a PhD in Fluid Mechanics and Heat and Mass Transfer from the University of Toulouse, where he graduated with the highest honors. He also earned a MicroMaster in Supply Chain Management from the Massachusetts Institute of Technology (MIT) in 2022. His academic journey includes a Master’s degree in Fluid Dynamics and Heat Transfer from the University of Toulouse, where he was the valedictorian, and a Bachelor’s degree in Engineering from the Lebanese University, also graduating as valedictorian. He has further specialized in renewable energy, earning Galileo Master Certificates in Hydrogen Energy and Renewable Energy Management & Finance from the Renewable Energy Institute. Additionally, he is a certified Hydrogen Energy Consultant Expert. Dr. Elhajjar has continuously enhanced his expertise through certifications in contract law (Harvard University), project management, and advanced quality techniques, equipping him with a strong foundation in both engineering and business management.

Experience 🌟

Dr. Bilal Elhajjar has over 18 years of professional experience spanning the steel, energy, and academic sectors. Since 2012, he has served as the Process Engineering, Development, and Logistics Manager at KWTSTEEL, where he has led over 1000 projects, optimizing supply chain operations, reducing costs, and enhancing plant efficiency. His expertise includes feasibility studies, process control, and commissioning steel plants and equipment. Prior to this, he was an Assistant Professor at the University of Evry Val d’Essonne, where he developed engineering courses and collaborated with industries on applied research projects. He also worked as a postdoctoral researcher at the University of Toulouse, contributing to nanofluidics and heat transfer studies. His career includes research stints at the University of Calgary and collaborations with Airbus and Gaztransport. With a strong blend of industrial leadership and academic research, Dr. Elhajjar has significantly contributed to engineering advancements and operational excellence.

Research Interests 🔬

Dr. Bilal Elhajjar’s research interests span fluid mechanics, heat and mass transfer, nanofluidics, hydrogen energy, and industrial process optimization. His work focuses on enhancing efficiency in energy-intensive industries, particularly in steel manufacturing and hydrogen management. He has conducted extensive research on heat transfer modeling, separation of fluid mixtures, and the application of nanotechnology to improve thermal properties of fluids. His studies on Soret-driven convection and thermo-gravitational separation have contributed to advancements in porous media research. Additionally, he has explored hydrogen energy applications, sustainable industrial practices, and supply chain optimization. His research bridges academia and industry, applying scientific principles to real-world engineering challenges, including logistics efficiency and cost reduction in manufacturing. With numerous high-impact publications, Dr. Elhajjar continues to advance knowledge in energy systems, process engineering, and sustainable industrial solutions, making significant contributions to both theoretical research and practical industry applications.

Awards 🏆

Dr. Bilal Elhajjar has been recognized for his outstanding contributions to engineering, research, and industrial process optimization. He graduated as the valedictorian in both his Bachelor’s and Master’s degrees, reflecting his academic excellence. His PhD in Fluid Mechanics from the University of Toulouse was awarded with the highest honors, acknowledging his pioneering research in heat transfer and fluid dynamics. Throughout his career, he has received various professional certifications and recognitions, including Galileo Master Certificates in Hydrogen Energy and Renewable Energy Management & Finance from the Renewable Energy Institute. His innovations in steel manufacturing and logistics optimization, which saved approximately $1 million annually, have positioned him as a leader in industrial process improvement. Additionally, he has been a visiting researcher at the University of Calgary and has collaborated with global organizations like Airbus and Gaztransport. His contributions continue to earn him recognition in both academic and industrial circles.

Research Skill  🔍 

Dr. Bilal Elhajjar possesses exceptional research skills in fluid mechanics, heat and mass transfer, nanofluidics, hydrogen energy, and industrial process optimization. He excels in numerical modeling, computational simulations, and experimental analysis, applying advanced methodologies to solve complex engineering challenges. His expertise includes finite element analysis, thermal modeling, and process simulation, which he has utilized in industrial research and academic studies. He has conducted groundbreaking research on Soret-driven convection, thermo-gravitational separation, and nanotechnology applications in heat transfer, leading to multiple high-impact publications. Dr. Elhajjar is adept at conducting feasibility studies, analyzing industrial processes, and optimizing supply chains, integrating research-driven strategies to enhance operational efficiency. His ability to bridge theoretical research with practical industry applications makes him a valuable contributor to both academia and engineering fields. With strong analytical, problem-solving, and technical writing skills, he continues to innovate in energy management, sustainable manufacturing, and process improvement.

Conclusion 

Dr. Bilal Elhajjar is a strong candidate for the Industry Impact Academic Award due to his extensive industrial expertise, leadership in engineering projects, and research contributions. His ability to bridge academia and industry is commendable, especially in process optimization, logistics, and hydrogen management. Strengthening the direct link between research and industry-wide impact could further enhance his application. Overall, his credentials align well with the award’s objectives.

Top Noted Publications 📚

  • Author(s): Bilal Elhajjar, Mohamed Samir Larhrib, Davide Mombelli

  • Year: 2025

  • Title: Consequences of Switching From Lime to Dololime Fines Injection in Electric Arc Furnace

  • Journal: Engineering Reports

  • DOI: 10.1002/eng2.70095

  • Type: Journal Article

  • Publication Date: March 2025

Saeed Zolfaghari Moghaddam | Engineering | Best Researcher Award

Saeed Zolfaghari Moghaddam | Engineering | Best Researcher Award

Assoc. Prof. Dr Saeed Zolfaghari Moghaddam, Urmia University of Technology, Iran

Dr. Saeed Zolfaghari Moghaddam is an esteemed academic in Electrical Engineering, specializing in power systems planning, renewable energy, and power market dynamics. 📚⚡ He earned his PhD from Amirkabir University, MSc from Tehran University, and BSc from Iran University of Science and Technology. His research includes advanced methods in smart grids, electric vehicle charging, and microgrid stability. 🔋🌍 Dr. Moghaddam has authored numerous high-impact journal articles and led industrial projects in power system automation and electromagnetic compatibility. A dedicated educator, he teaches courses in electrical machines, smart grids, and power system planning. 🎓✨

Publication Profile

google scholar

Educational Background

Assoc. Prof. Dr. Saeed Zolfaghari Moghaddam is a distinguished academic with expertise in electrical engineering. He earned his PhD in Power Engineering from Amirkabir University of Technology, Tehran, Iran 🇮🇷. Prior to this, he completed his MSc in Power Engineering from the University of Tehran and his BSc in Electronics Engineering at the Iran University of Science and Technology, Tehran. Dr. Moghaddam has made significant contributions to the field of power systems and electronics, leveraging his academic background to advance research and innovation in electrical engineering. ⚡📚

Research Interests

Assoc. Prof. Dr. Saeed Zolfaghari Dr. Moghaddam specializes in renewable energy, power systems planning, and reliability. His research focuses on optimizing power markets, ensuring sustainable and reliable electricity distribution. With expertise in electrical apparatus design and industrial automation, Dr. Zolfaghari also works on advanced system calculations, including load flow and short-circuit analysis. His contributions to the technical side of power systems play a vital role in improving efficiency and sustainability within the energy sector. 🌍💡🔧

Teaching Contributions 

Assoc. Prof. Dr. Saeed Zolfaghari is a distinguished academic in electrical engineering, having taught a wide array of undergraduate and graduate courses. His expertise spans subjects such as Electrical Machines, Power Systems Analysis, Smart Grid Control, and Engineering Mathematics. With a strong commitment to education, he plays a vital role in shaping the next generation of engineers and researchers. His passion for teaching and advancing the field highlights his dedication to nurturing students’ skills and fostering a deep understanding of complex engineering concepts. Dr. Zolfaghari’s influence continues to inspire both students and colleagues.

Industrial Projects 

Assoc. Prof. Dr. Saeed Zolfaghari is a distinguished researcher with significant contributions to industrial projects. His work spans various fields, including grounding in military systems, DG-connected substation automation, and optimizing Combined Heat and Power (CHP) and Photovoltaic (PV) capacities. Dr. Zolfaghari’s expertise lies in applying cutting-edge research to address complex engineering challenges, delivering practical solutions with real-world impact. His achievements highlight his role in shaping innovative solutions within the engineering and energy sectors. Through these projects, Dr. Zolfaghari continues to bridge the gap between academic research and industrial applications. 💡🔧🌱

Research Focus

Assoc. Prof. Dr. Saeed Zolfaghari Moghaddam’s research primarily focuses on energy systems, optimization techniques, and power networks, particularly in the context of renewable energy integration and grid planning. His work includes stochastic and robust optimization, wind energy integration, transmission and distribution expansion planning, and game theory applications in electrical networks. Dr. Moghaddam’s expertise also extends to heat transfer enhancement in distribution transformers and multi-stage stochastic planning under uncertainties. His contributions have significant implications for energy efficiency and sustainable power systems. 🌍⚡🔋📊

Publication Top Notes

Network-constrained optimal bidding strategy of a plug-in electric vehicle aggregator: A stochastic/robust game theoretic approach

Generation and transmission expansion planning with high penetration of wind farms considering spatial distribution of wind speed

Bilevel transmission expansion planning using second-order cone programming considering wind investment

A new method to adequate assessment of wind farms’ power output

Multi-stage stochastic transmission expansion planning under load uncertainty using benders decomposition

Coordinated scheme for expansion planning of distribution networks: A bilevel game approach

Heat transfer enhancement in distribution transformers using TiO2 nanoparticles

Udhayasankar R | Engineering | Best Faculty Award

Udhayasankar R | Engineering | Best Faculty Award

Dr Udhayasankar R, Government, India

Dr. R. Udhayasankar, a distinguished scholar in biocomposites and thermal engineering, completed his Ph.D. (2019), PG (2011), and UG (2006) from Annamalai University. His academic journey began with a diploma in Mechanical Engineering (1999) from Muthiah Polytechnic College. Dr. Udhayasankar has authored numerous international publications on coconut shell-reinforced composites and their thermal, mechanical, and morphological properties. He has guided 8 PG and 15 UG projects and serves as the Exam Cell Coordinator at Annamalai University. A life member of ISTE, he has participated in various workshops and FDPs, contributing to green composite development and sustainable engineering. 🌍📘

Publication Profile

google scholar

Educational Qualifications

Dr. Udhayasankar R has a distinguished academic background rooted in mechanical engineering and advanced studies. He earned his Diploma in Mechanical Engineering from Muthiah Polytechnic College, Chennai, in 1999. Pursuing higher education at Annamalai University, he completed his undergraduate degree in 2006 and specialized in his postgraduate studies in 2011. Dr. Udhayasankar crowned his academic achievements with a Ph.D. from Annamalai University in 2019. His dedication to education and expertise in engineering highlights his continuous pursuit of excellence in his field. 📚✨

Professional Activities 

Dr. Udhayasankar R has made significant contributions to academia, particularly as the Exam Cell Coordinator, where his organizational expertise ensures smooth academic processes. Over the years, he has demonstrated unwavering commitment to mentoring future engineers by supervising numerous postgraduate and undergraduate projects, guiding a total of 23 batches to success. His hands-on approach and dedication to advancing knowledge have left a lasting impact on his students, shaping them into skilled professionals ready to excel in their fields. Dr. Udhayasankar’s efforts reflect his passion for education and his role as a beacon of inspiration in the academic community. 📚🔧

Development and Outreach 

Dr. Udhayasankar R is a passionate educator and researcher who actively participates in workshops, seminars, and Faculty Development Programs (FDPs) on diverse topics, including industrial automation and material properties. His expertise shines in guest lectures, such as his session at Government Engineering College, Coimbatore, where he explored the applications of composite materials in sports equipment. 🏗️🎾 Dr. Udhayasankar’s ability to connect theoretical knowledge with practical applications inspires students and professionals alike. Through his engagements, he fosters innovation and bridges the gap between academia and industry, contributing significantly to the advancement of engineering and technology. 🚀📚

Memberships and Leadership 

Dr. Udhayasankar R, a Life Member of the Indian Society for Technical Education (ISTE), exemplifies dedication to professional excellence and a passion for continuous learning. His affiliation with ISTE highlights his commitment to advancing technical education and staying at the forefront of innovation. With a steadfast approach to professional development, Dr. Udhayasankar actively engages in knowledge-sharing and collaborative opportunities. His journey reflects a deep enthusiasm for growth, both as an educator and a learner, inspiring others in the academic and technical community to pursue excellence. 🌟🔬

Research Focus

Dr. Udhayasankar R specializes in biocomposites, fiber-reinforced materials, and sustainable polymer composites. His research focuses on utilizing natural fibers like banana, coconut shell, sisal, and bagasse for creating environmentally friendly materials. Key areas include mechanical and thermal characterization, morphological analysis, and the effect of chemical treatments like NaOH on composite properties. His innovative work explores green composites using renewable resources like cardanol resin, advancing sustainability in materials science. His contributions are impactful in eco-friendly materials development, tribology, and engineering applications. 🌿🛠️🌍

Publication Top notes

Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber

Study on Mechanical, Thermal and Morphological Properties of Banana Fiber‑Reinforced Epoxy Composites

Study on mechanical and morphological properties of sisal/banana/ coir fber‑reinforced hybrid polymer composites

MECHANICAL AND THERMAL CHARACTERIZATION OF BAGASSE FIBRE / COCONUT SHELL PARTICLE HYB R ID BIOCOMPOSITES REINFORCED WITH CARDANOL RESIN

Coconut shell particles reinforced cardanol–formaldehyde resole resin biocomposites: effect of treatment on thermal properties

Comparative mechanical, thermal properties and morphological study of untreated and NaOH-treated coconut shell-reinforced cardanol environmental friendly green composites

Preparation and properties of cashew nut shell liquid-based composite reinforced by coconut shell particles

Junshu Zhang | Engineering | Best Researcher Award

Dr. Junshu Zhang | Engineering | Best Researcher Award

Dr. Junshu Zhang, Huazhong University of Science and Technology, China

Dr. Junshu Zhang specializes in structural health monitoring and flexible electronics. His research focuses on improving sensor systems, including recognizing bolt loosening and developing mechanical models for flexible sensors. He has contributed to strain transfer models that predict sensor properties and eliminate environmental factors. With 7 ongoing research projects, 3 patents, and 4 published journal articles, Dr. Zhang is a key innovator in his field. He holds professional membership with the Chinese Society for Vibration Engineering. 🌐

Publication Profile

Scopus

Academic and Professional Background

Dr. Junshu Zhang is a prominent researcher specializing in structural health monitoring and flexible electronics. His work focuses on advancing sensor technologies, particularly in the recognition of bolt loosening and the development of mechanical models for flexible sensors. By establishing strain transfer models, Dr. Zhang aims to predict sensor properties and eliminate the influence of environmental and material factors. With 7 ongoing research projects, 3 patents, and several published journal articles, he is making significant contributions to the field. He is a member of the Chinese Society for Vibration Engineering. 🌐

 

Research Focus 🧑‍🔬

Dr. Junshu Zhang’s research primarily focuses on structural health monitoring and flexible electronics, with a strong emphasis on developing innovative sensor technologies. His work includes bolt preload impact modulation, improving the strain transfer model for flexible sensors, and enhancing measurement calibration for piezoresistive sensors. He has contributed to the design of graphene nanoplatelets-based strain sensors and non-uniform shear stress models to improve sensor accuracy. These efforts aim to optimize sensor performance in structural monitoring systems and flexible electronics. Dr. Zhang’s contributions are central to the advancement of sensor mechanics and sensor applications. 📊📐

 

Publication Top Notes

  • Cointegration-based impact modulation for bolt preload under the influence of percussion force (2024) 🔧
  • Measurement Calibration of Flexible Piezoresistive Sensors Based on Strain Transfer Model Accounting for Coating Effect (2024) 📏
  • Graphene Nanoplatelets/Polydimethylsiloxane Flexible Strain Sensor with Improved Sandwich Structure (2024) 🛠️ – Cited by 2
  • Improved strain transfer model for flexible sensors based on non-uniform distribution of shear stress in each layer (2024) 📐 – Cited by 2

Mohammad Baraheni | Mechanical Engineering | Best Researcher Award

Assist. Prof. Dr. Mohammad Baraheni | Mechanical Engineering | Best Researcher Award

Assist. Prof. Dr. Mohammad Baraheni, Arak University of Technology, Iran

Assist. Prof. Dr. Mohammad Baraheni 👨‍🏫 is an Assistant Professor at Arak University of Technology, specializing in Mechanical Engineering, particularly in Production & Manufacturing. He holds a PhD from the University of Kashan, focusing on rotary ultrasonic machining. His research interests include ultrasonic machining, additive manufacturing, artificial intelligence in manufacturing, and advanced ceramics. Dr. Baraheni has published extensively in international journals and received accolades such as the Excellent Paper Award at ISAAT 2023. He has teaching experience in subjects like CNC and advanced machining. His professional background also includes roles in industry and design engineering. 📚🔧🌍

Education

Assist. Prof. Dr. Mohammad Baraheni completed his Post-Doctoral Degree at the University of Tabriz (2019-2022), specializing in Mechanical Engineering, with a focus on Ultrasonic Machining of Additive Manufactured Materials. He also pursued a Sabbatical Fellowship at Hochschule Furtwangen University in Germany (2017-2018), where he developed an expert system using Artificial Intelligence. Dr. Baraheni holds a PhD in Mechanical Engineering from University of Kashan (2014-2020), focusing on Rotary Ultrasonic Machining of Si3N4. His earlier academic journey includes an M.Sc. and B.Sc. from the University of Tabriz. 🏫🔧🧑‍🎓

 

Professional Experience

Assist. Prof. Dr. Mohammad Baraheni has accumulated diverse experience in both academia and industry. Since 2020, he has been serving as an Assistant Professor at Arak University of Technology. Previously, he worked as an Engineer at Tractorsazi Company (2018-2020) and a Research Assistant at Furtwangen Hochschule in Germany (2017-2018). He also gained valuable experience as a Design Engineer at Jahan Saderat Machine (2016-2017) and a Sales Engineer at Pumpiran (2012-2014). Additionally, Dr. Baraheni has worked independently, designing industrial molds and machines such as Briquetting machines and Ultrasonic washing machines. ⚙️🔧

 

Teaching Experience

Assist. Prof. Dr. Mohammad Baraheni has a rich teaching portfolio across various institutions. He has taught courses in Industrial Drawing at University of Kashan, Grinding Technology, Universal Machining, and Advanced Machining Processes at Islamic Azad University. At Arak University of Technology, he has delivered lectures on Computer Numerical Control, Casting, Metallurgy, Metrology, and Welding. Additionally, Dr. Baraheni has taught Plastic Molding Design at University of Tabriz and English for Mechanical Engineering at Shahid Mousavian University. His broad expertise spans key areas in mechanical engineering. 🛠️📚

 

Research Focus

Assist. Prof. Dr. Mohammad Baraheni’s research primarily revolves around advanced machining techniques and their application in composite materials. His work extensively explores rotary ultrasonic machining, ultrasonic-assisted drilling, and grinding technologies for materials like Si3N4 ceramics, carbon fiber reinforced polymers (CFRP), and glass fiber reinforced plastics (GFRP). He has contributed to optimization of process parameters, delamination control, surface integrity, and cutting force prediction. His research also delves into additive manufacturing, material behavior, and industrial mold design, focusing on enhancing precision and efficiency in machining processes. His work bridges mechanical engineering with innovative manufacturing. 🌍

 

Publication Top Notes

  • Residual stress in engineering materials: a review – 104 citations, 2022 📖🔧
  • Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding – 70 citations, 2019 🔬🛠️
  • Parametric analysis of delamination in GFRP composite profiles by performing rotary ultrasonic drilling approach – 50 citations, 2019 🔩💡
  • Comprehensive optimization of process parameters in rotary ultrasonic drilling of CFRP – 43 citations, 2019 ⚙️🔩
  • Parametric investigation of rotary ultrasonic drilling of carbon fiber reinforced plastics – 39 citations, 2018 ⚙️🔧
  • Enhancing dimensional accuracy and surface integrity by helical milling of CFRP – 36 citations, 2019 📐✂️
  • Feasibility study of delamination in rotary ultrasonic-assisted drilling of GFRP – 35 citations, 2018 🔬🛠️
  • Mathematical model to predict cutting force in rotary ultrasonic assisted end grinding of Si3N4 – 32 citations, 2020 📏💻
  • Environmental, mechanical and materialistic effects on delamination damage of glass fiber composites – 31 citations, 2019 🧪🛠️
  • Ultrasonic-assisted friction drilling process of aerospace aluminum alloy (AA7075) – 19 citations, 2021 ✈️🔩
  • Evaluating the hole quality produced by vibratory drilling: additive manufactured PLA+ – 18 citations, 2021 🖨️🔩
  • Statistical study of the effect of various machining parameters on delamination in drilling of CFRP – 17 citations, 2018 🔍💡
  • Investigation on rotary ultrasonic assisted end grinding of silicon nitride ceramics – 13 citations, 2019 ⚙️🔬
  • Experimental comparison of MO40 steel surface grinding performance under different cooling techniques – 13 citations, 2019 🛠️🧊
  • Experimental and empirical model analysis of microsurface texturing on 316 L press-fit joints fabricated by selective laser melting – 12 citations, 2020 🔬🖨️

 

HARPREET AASI | Engineering | Women Researcher Award

HARPREET AASI | Engineering | Women Researcher Award

Dr HARPREET AASI, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, India

Dr. Harpreet Aasi is a Postdoctoral Fellow in Thermal Engineering at IIT Bombay (2024–present). He holds a Ph.D. in Thermal Engineering from IIT Roorkee (2014–2020), an M.Tech. from NIT Raipur, and a B.E. in Mechanical Engineering. His expertise lies in heat transfer enhancement, particularly using ultrasound in electronic cooling systems, involving both numerical (ANSYS Fluent) and experimental methods. A recipient of multiple awards, including the Silver Medal at NIT Raipur, Dr. Aasi has contributed to prestigious projects sponsored by CSIR and DST. He is also an active reviewer for high-impact journals and has published extensively in heat exchanger optimization. 📚💡

Publication Profile

Scopus

Education

Dr. Harpreet Aasi is a distinguished researcher specializing in thermal engineering. Currently, he is pursuing a Postdoctoral Fellowship at the Indian Institute of Technology Bombay (March 2024 – present). He earned his Ph.D. with honors in Thermal Engineering from IIT Roorkee (2014-2020) and completed an M.Tech. in Thermal Engineering with an impressive CPI of 8.96/10 at NIT Raipur (2011-2013). His academic journey began with a B.E. in Mechanical Engineering from New Government Engineering College Raipur, achieving a stellar CPI of 8.99/10 (2006-2010). Dr. Aasi’s dedication to academics is reflected in his strong foundations, scoring 76% in Intermediate (2005-2006) and 85% in Matriculation (2003-2004). 📚✨

Experience

Dr. Aasi conducted numerical (Ansys Fluent) and experimental studies (non-intrusive optical techniques) on single-phase and two-phase flow boiling processes for electronic cooling systems. This research explored the effect of ultrasound parameters, demonstrating its potential for enhancing heat transfer. Ph.D. Research: Investigations on Three-fluid Compact Plate-fin Heat Exchanger 🌡️📊 Dr. Aasi performed extensive experimental and numerical investigations (MATLAB coding) under transient and steady states, addressing flow maldistribution, inlet temperature non-uniformity, and ambient heat interaction. Innovative modeling optimized geometrical attributes for diverse plate-fin types. M.Sc. Research: Parametric Study of Orthotropic Annular Fin with Contact Resistance 🌀🛠️ Dr. Aasi developed a 2D dimensionless steady-state model to assess the thermal performance of orthotropic annular fins, focusing on polymer matrix composites with axis-dependent properties.

Award and Scholarships

Dr. Harpreet Aasi has an impressive academic record, including a Silver Medal at the National Institute of Technology (NIT) Raipur in 2012-2013 🥈. He received the Academic Excellence Award at NIT Raipur in 2011-2012 🎓. Ranked 10th in the Chhattisgarh Swami Vivekanand Technical University state toppers list, he was 1st in New Government Engineering College Raipur in 2010 🏆. Dr. Aasi secured prestigious fellowships, including the Institute Postdoctoral Fellowship at IIT Bombay in 2024 🧑‍🔬 and MHRD scholarships for his Ph.D. (2014-2019) and M.Tech. (2011-2013) 📚. Additionally, he earned state-level merit scholarships during his B.E. studies (2007-2010) 🏅.

Project contribution

Dr. Harpreet Aasi has conducted groundbreaking research on optimizing the performance of three-fluid heat exchangers through both numerical and experimental investigations. Sponsored by CSIR, this research aims to improve heat transfer efficiency and system performance. Additionally, his study on the effect of temperature and flow nonuniformities on three-fluid compact heat exchangers, sponsored by DST, delves into understanding how such factors influence overall efficiency. These contributions are crucial in advancing thermal management systems, with potential applications in various industries, from energy to manufacturing. 🌡️🔧

Research focus

Dr. Harpreet Aasi’s research primarily focuses on the thermo-hydraulic performance and optimization of multi-fluid heat exchangers, particularly three-fluid systems. His work investigates the effects of flow non-uniformity, ambient heat ingression, and temperature nonuniformity on the efficiency and dynamic behavior of cross-flow and plate-fin heat exchangers. Using advanced techniques like Artificial Neural Networks (ANN) and second law analysis, he aims to improve heat exchanger designs for enhanced thermal management in various engineering applications. His research is crucial for energy efficiency and thermal optimization in industries such as cryogenics, power generation, and heat recovery. 🔥🔧⚙️💡

Publication top notes

Investigation on cross-flow three-fluid compact heat exchanger under flow non-uniformity: an experimental study with ANN prediction

The impact of ambient heat ingression on performance of cryogenic three-fluid cross-flow compact heat exchanger

Experimental investigation and ANN modelling on thermo-hydraulic efficacy of cross-flow three-fluid plate-fin heat exchanger

Detailed design optimization of three-fluid parallel-flow plate-fin heat exchanger using second law analysis

Influence of flow non-uniformity on the dynamic behaviour of three-fluid cross-flow compact heat exchanger

A novel equivalence approximate model for second law based optimization of three-fluid cross-flow plate-fin heat exchanger using genetic algorithm

 

Suganya. R | Engineering | Best Researcher Award

Dr. R. Suganya| Engineering | Best Researcher Award

Associate Professor,  Dr.  N.G.P Institute of Technology,  India.

Dr. R. Suganya, an Associate Professor at Dr. N.G.P Institute of Technology, has nearly 20 years of experience in engineering education. Her research focuses on mobile networks, IoT, and machine learning, resulting in 21 publications in Scopus-indexed journals. Notable achievements include the Academic Excellence Award from Novel Research Academy and multiple NPTEL accolades. As a mentor for the IITB-AICTE Mapathon, she has demonstrated her commitment to student engagement and collaborative learning. Dr. Suganya’s impressive contributions to academia and research make her a deserving candidate for the Research for Best Researcher Award.

Publication Profile

Google Scholar

Educational Background 

Dr. R. Suganya holds a commendable academic record, beginning with her Bachelor of Engineering (B.E.) in Electronics and Communication from V.L.B Janakiammal College of Engineering and Technology, where she graduated with First Class honors. She continued her education at Kumaraguru College of Technology, earning a Master of Engineering (M.E.) in Computer Science and Engineering with Distinction. Her commitment to academic excellence culminated in a Ph.D. from Anna University, Chennai, where she conducted advanced research, further solidifying her expertise in her field. This solid educational foundation underpins her effective teaching and innovative research contributions in engineering.

Professional Experiences

Dr. R. Suganya has a robust academic background, currently serving as an Associate Professor at Dr. N.G.P Institute of Technology since May 2023, following an extensive tenure of nearly 17 years at Sri Krishna College of Technology. Her teaching experience spans across various levels of engineering education, showcasing her dedication to nurturing the next generation of engineers. Additionally, her role as a lecturer at Nanjiah Lingammal Polytechnic College provided her with foundational teaching experience that further solidified her pedagogical skills.

Research Interests and Contributions

Dr. Suganya’s research interests are primarily in the domains of mobile networks, IoT, and machine learning, evidenced by her impressive publication record. She has authored 21 articles in Scopus-indexed journals, covering innovative topics such as channel allocation methods, secure voting systems, and cancer recognition frameworks. Her recent work involves the application of advanced algorithms and machine learning techniques, demonstrating her commitment to leveraging technology for real-world applications.

Awards and Achievements  

Dr. Suganya’s achievements have not gone unnoticed. She has received several accolades, including the Academic Excellence Award from Novel Research Academy and the NPTEL Discipline Star Award on two occasions. Her recognition as a mentor for the IITB-AICTE Mapathon further underscores her ability to guide students and foster collaborative learning environments. Such acknowledgments illustrate her impact within the academic community and her dedication to excellence in research and teaching.

Conclusion

In conclusion, Dr. R. Suganya’s extensive experience, notable research contributions, and numerous accolades make her an exceptional candidate for the Research for Best Researcher Award. Her commitment to academic excellence, coupled with her innovative research in technology, positions her as a leading figure in her field. Recognizing her contributions through this award would not only honor her achievements but also inspire others in the academic community to pursue excellence in research and education.

Publication Top Notes

  • Automated smart trolley with smart billing using Arduino 📝 (22) – 2016
  • Classification of DDoS attacks–A survey 📊 (13) – 2020
  • Simulation and Analysis of SVHM Technique for DCMLI under Transient Conditions with Non-Linear Loads 🔬 (8) – 2017
  • Blockchain based secure voting system using IoT 🔒 (6) – 2020
  • Reduction of THD in Single Phase AC to DC Boost Converter using PID controller ⚡ (6) – 2014
  • Fuzzy rough set inspired rate adaptation and resource allocation using Hidden Markov Model (FRSIRA-HMM) in mobile ad hoc networks 🧠 (5) – 2019
  • Automated Toll Plaza System Using RFID and GSM Technology 🚦 (5) – 2018
  • Tamper detection using watermarking scheme and k-mean clustering for bio-medical images 🖼️ (5) – 2016
  • Voltage control of AC-DC converter using sliding mode control ⚙️ (5) – 2013
  • Air Quality Monitoring System with Emergency Alerts Using IoT 🌍 (4) – 2021
  • Detect fake identities using improved Machine Learning Algorithm 🔍 (4) – 2021
  • Smart sentimental analysis of the impact of social media on COVID-19 📱 (4) – 2021
  • Pathogenesis of oral squamous cell carcinoma—an update 🦷 (4) – 2019
  • Identifying and Ranking Product Aspects based on Consumer reviews 🛍️ (4) – 2015
  • An Iterative Image Restoration Scheme for Degraded Face Images 🖥️ (4) – 2013
  • Product review analysis by web scraping using NLP 📝 (3) – 2022
  • An Erlang Factor integrated channel allocation method for boosting quality of services in mobile ad hoc networks 📶 (3) – 2018
  • Denial-of-Service Attack Detection Using Anomaly with Misuse Based Method 🚫 (3) – 2016
  • Development and Proposal System for the Formulation of Solar paint 🌞 (2) – 2021
  • Immunohistochemical expression of Bcl‑2 in oral squamous cell carcinoma 🩺 (2) – 2009